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ABSTRACT

This paper discusses a mechanism called
Draco which aids in the construction of
software systems. In particular we are con-
cerned with the reuse of analysis and design
information in addition to programming
language code.

The goal of the work on Draco has been to
increase the productivity of software special-
ists in the construction of similar systems.
The particular approach we have taken is to
investigate the construction of software from
reusable software components which are
organized by problem domair. The experi-
mental method used was to hypothesize a
scheme based on previous work and experi-
ment with example problems on a prototype
system.

INTRODUCTION

It has been a common practice to name
new computer languages after stars. Since
the system described in this paper is a
mechanism which manipulates special pur-
pose langauges it seems only fitting to name
it after a structure of stars, a galaxy. Draco is
a dwarf elliptical galaxy in our local group
whose small size and close distance to home
is well suited to the current system which is a
small prototype.

This work was supported by the National Science
Foundation under grant MCS-81-03718 and by the
Air Force Office of Scientific Research (AFOSR).
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What Does Draco Do?

There are basically only three activities
performed by Draco:

1. Draco accepts a definition of a problem
domain as a high-level domain-specific
language which we call a domain
language. Both the syntax and seman-
tics of the domain language must be
described.

2. Once a domain language has been
described, Draco can accept a descrip-
tion of a software system to be con-
structed as a statement or program in
the domain language.

3. Once a complete domain language pro-
gram has been given then Draco can
refine the statement into an executable
program under human guidance.

While the above three tasks are easily stated
they are difficult to achieve and each will be
described in detail in a following section. The
fine details, relevant work, and design
tradeoffs of the Draco approach are discussed
in depth by Neighbors (Neighbors, 1980a).
The features and limitations of the current
Draco implementation are given in the Draco
manual (Neighbors, 1980b).

THE ORGANIZATIONAL CONTEXT
OF DRACO

Before we go further into the technical
details of a Draco specification and
refinement it is helpful to understand who
supplies these details. Figure 1 shows the flow
of information between people in different
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Figure 1. Organieational Context of Draco

Classically a user with a desire for a
certain type of system would interact with a
systems analyst who would specify what the
system should do based on the analyst’s past
experience with these types of systems. This
would be passed on to system designers who
would specify how the system was to perform
its function.

With Draco we hypothesize two new
major human roles: the domain analyst and
the domain designer. The domain analyst is a
person who examines the needs and require-
ments of a collection of systems which seem
»cimilar”. We have found that this work is
usually only sucessfully done by a person who
has built many systems for different custo-
mers in the same problem area. Once the
domain analyst has described the objects and
operations which are germane to the area of
interest then these are given to a domain
designer who specifies different implementa-
tions for these objects and operations in
terms of the other domains already known to
Draco.

Once a set of Draco domains has been
developed by an organization in their area of
software system construction, then new sys-
tem requirements from users can be con-
sidered by the orgainzation’s systems analysts
in the light of the Draco domains which
already exist. If a Draco domain exists which
can acceptably describe the objects and
operations of the required system then the
system analyst has a framework on which to
hang the new specification. This is the reuse
of analysis information and in our opinion it
is the most powerful brand of reuse. Once the
new system is cast as a domain language pro-
gram then the systems designer interacts with
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Draco in the refinement of the problem to
executable code. In this interaction the sys-
tems designer has the ability to make deci-
sions between different implementations as
specified by the domain designers of the
Draco domains. This is the reuse of design
information and it is the second most power-
ful brand of reuse.

Thus, Draco captures the experience of
the “old hands” of the organization and
delivers this experience in problem specific
terms to every systems analyst in the organi-
zation for their education and use. In addi-
tion, Draco will produce different implemen-
tations with different execution speed and
space characteristics from the same problem
description. The Draco response to rapid pro-
totyping is to produce implementations using
very safe and simple implementation struc-
tures. In this context experience has shown
that refinement proceeds with very little
human guidance.

WHAT COMPRISES A DOMAIN
DESCRIPTION

In this section we will describe the
results of domain analysis and domain design
which must be given to Draco to specify a
complete domain. There are five parts to a
domain description:

1. Parser The parser describes the external
syntax of the domain and the prefiz
internal form of the domain. The syn-
tax is described in a conventional BNF
notation which is augmented with con-
trol mechanisms such as parser error
recovery and parser backtracking. The
internal form is a tree with an attribute
name and data at each node. It is not a
parse tree. The internal form is the
data actually manipulated by Draco.
Some consistency checks may be per-
formed by the parser such as the data
flow consistency that all data produced
is consumed and all data consumed is
produced.

2. Prettyprinter The prettyprinter descrip-
tion tells Draco how to produce the
external syntax of the domain for all
possible program fragments in the
domain. This is necessary because the
mechanism must be able to interact
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with people in the language of the
domain and discuss incomplete parts of
the problem.

3. Transformations The program transfor-
mations on 2 domain language program
are strictly source-to-source transforma-
tions on the objects and operations of
the domain. These transformations
represent the rules of exchange between
the objects and operations of the
domain and are guaranteed to be
correct independent of any particular
implementation chosen for any object
or operation in the domain. This is an
important concept and different from
the usual definition of program transfor-
mations. The concept of transformation
used in the USC/ISI Transformational
Implementation system (Balzer, Gold-
man, and Wile, 1976) and the Harvard
Program Development System (Cheat-
ham, Holloway, and Townley, 1979) is a
combination of Draco transformations
and refinements. Draco program
transformations never make implemen-
tation decisions they only represent
optimizations at the domain language
level.

4. Components The software components
specify the semantics of the domain.
There is one software component for
each object and operation in the
domain. The software components
make implementation decisions. Each
software component consists of one or
more refinements which represent the
different implementations for the object
or operation. Each refinement is a
restatement of the semantics of the
object or operation in terms of one or
more domain languages known to Draco.
A refinement at a high-level of abstrac-
tion is similar to the concept of a plan
in the MIT Programmer’s Apprentice
system (Waters, 1982). The semantics
of a component must of course be
recursive to allow such representations
as lists as arrays and arrays as lists. In
addition, the refinements must specify
their implementation decisions expli-
citly so that Draco can maintain the
consistency of the developing program.
These decisions are specified, kept and
used in a form similar to that used in

Module Interconmection Languages
(MILs) which are discussed in (Prieto-
Diaz and Neighbors, 1982).

5. Procedures Domain-specific procedures
are used in circumstances where the
knowledge to do a certain domain-
specific transformation is algorithmic in
nature. An example is the construction
of LR(k) parser tables from a grammar
description. These procedures are simi-
lar to the Draco transformations in that
they only operate in one domain and
never reach across domain boundaries
to make implementation decisions.

Thus, the basis of the Draco work is the use
of domain analysis to produce domain
languages which may be transformed for
optimization purposes and implemented by
software components each of which contains
multiple refinements which make implemen-
tation decisions by restating the problem in
other Draco domain languages. Each of these
domain parts will be discussed in more detail
in a dedicated section below.

Figure 2 shows how some hypothetical
domains might be connected together to
build a ”statistics reporting domain”.
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Figure 2. An Example Domain Orgsnization

It is important to keep in mind that the
“report format domain” might be used by
many other domains other than the ”statis-
tics reporting domain” and this too is the
reuse of analysis. It has been our experience
that some domains such as a database
domain are used in the design of many other



domains. Thus in our figure we are not just
discussing a reusable ”statistics reporting
domain” we are really discussing the reusable
domains of “report formatting” and “statisti-
cal calculation”. The “statistics reporting
domain” is simply an instance of reuse.

While some domains sound very prob-
lem specific such as an ”Air Defense System”
domain where there is not a lot of demand
for many systems, keep in mind that these
domains are primarily built out of problem
inspecific and much more reusable domains
(e.g., database domain, graphics domain)
which are tailored in the refinement process
to the specific problem.

The language scheme is neither wide-
spectrum mnor narrow-spectrum. In a wide-
spectrum scheme one language suffices to
represent the developing program from
specification to final executable code. In a
narrow-spectrum approach the problem
progresses through a strict hierarchy of
languages (e.g, specification language, design
language, executable language.) Draco is a
scheme where the problem is in many
languages at once where the languages are
not in a strict hierarchy.

SOFTWARE COMPONENTS AND
THE REFINEMENT PROCESS

There is one software component for
each object and operation in a domain ard
each software component consists of multiple
refinements. Each refinement makes an
implementation decision by restating the
semantics of the object or operation in terms
of other domains know to Draco. The
refinement process is the process of restating
the problem originally specified in one
domain repetitively into other domains. Dur-
ing this process the consistency of the
developing program must be maintained and
its level of abstraction must eventually
decrease to an executable (or compilable)
language.

An example software component for
exponentiation in a low-level language is
shown in figure 3. We must emphasize that
this does not represent a high-level language
and while Draco has domains which represent
this level of general-purpose languages our
aspirations and experience are with much
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more problem-specific domains. The necessity
of an example in a commonly understood
domain forces us to this level.

OOMPONENT: EXI{A,B

PURFCSE ecponmﬁanon, raise A to the Bth power

IOSPEC: A ber, B -/

DECISION:  The binary shift method is (In2(B)) and requires
B integer=—=>>0 while the Taylor expansion is an
adjustable number of terms and requires A>>0.

REFINEMENT: binary shift method
CONDITIONS: A a SIMAL number
B a SIMAL integer
BACKGROUND: Knuth'’s SemiNumerical, Algorithm A, pg. 399
INSTANTIATION: FUNCTION, INLINE
OODE SIMAL B.OCK
[{ IF B<0 THEN EXCEPTION ;
POWFR =8 ; NUMBER:=A ; ANSWER: =] ;
WHILE PFOWER >0 DO
([ IF POWER&1=1 THEN ANSWER: —ANSWEFsNUMEER ;
POWER: =FOWER > >1 ;
NUMBER: =NUMEEReNUMBER |} ;
RETURN ANSWER |]
END REFINEMENT

REFINEMENT: Taylor expansion
CONDITIONS: A,B as SIMAL numbers
BACKGROUND: VNR Math Ehcydopedm pg. 490
INSTANTIATION: FUNCTION, INLINE
ADJUSTMENTS: TERMS[20] - number of terms, emror is
approximately (Bein(A))" TERMS /TERMS!
CODE SIMAL.HLOCK
([ IF A <=0 THEN EXCEPTION ;
SUM =1 ; TOP:. =BLNA) ; TERM =1 ;
FOR I.—l TO TERMB DO
[ TERM ={TOP/I#TERM;
=SUM+TERM]] ;

Figure 3. An Example Software Component

The example component is has two
refinements which refine the exponentiation
operator in the SIMAL domaint back into the
SIMAL domain by making implementation
decisions. Notice that the choice of one or the
other of these refinements will cause the final
programs to act differently even if all other
implementation decisions are the same. The
exception conditions for these two methods
are different as are the acceptable types and
ranges.

During the refinement process a systems
designer would be responsible for making two
different decisions with respect to this com-
ponent. First it must be decided which
refinement to use and second it must be
decided what kind of functional structure will
result from the refinement.

The decision of which refinement to use
must be made unless some of the refinements
have been excluded by ASSERTIONS in pre-
viously used refinements. As an example, if it
had previously been decided that all numbers
in the domain would be represented in float-

tSIMAL is a simple algorithmic language.
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ing point notation then the “binary shift
method” would be automatically excluded
from use by the Draco consistency check
mechanism. ASSERTIONS specify implemen-
tation decisions if a refinement is used and
CONDITIONS specify decisions which must
have been made before a refinement may be
used. Primarily the domain object
refinements make ASSERTIONS and domain
operation refinements check CONDITIONS.

Once a refinement for a component is
chosen the systems designer must describe
how the refinement is to fit into the structure
of the developing program. The different pos-
sibilities are governed by the INSTANTIA-
TION field of the refinement. By structure
we mean the function-procedure call struc-
ture of the resulting program as might be
shown in a Structured Design structure chart.
If the refinement is used INLINE then one
can think of the refinement mechanism as
simply expanding the refinement in the
developing program as a macro.* If the
refinement used as a FUNCTION then the
body of the refinement is set aside as a func-
tion definition and the original use of the
component is replaced with a call to the func-
tion.} Between these two extremes is PAR-
TIAL instantiation where some of the argu-
ments are instantiated inline and some are
passed.§

These decisions must be considered by
the systems designer for each and every com-
ponent in every domain in the developing
system. These are far too many decisions for
a person to make or even consider for a large
system. The refinement mechanism in Draco
provides three primary mechanisms for deal-
ing with this complexity: domains, locales,
and tactics.

Domalins as an Aid to Reflnement Com-
plexity

Aside from the convenient encapsula-
tion of a problem area that the concept of
domains provides to the domain and systems

*With variable renaming and access problems it is a
bit more complex than a macro expansion but this
i3 a useful model of the process.

$The types and accesses to the passed parameters
must be right of course.

§ln the PARTIAL case Draco must keep track of
different versions of the functions.
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analysts, the domain concept is also of use to
the designers. The original problem is stated
in the domain language of a single domain
but the instant the refinement process is
invoked on the problem it ends up as a state-
ment in many domains at once! These
domains are being used as modelling domains
for the problem (Tonge and Rowe, 1975).
Figure 4 graphically illustrates the refinement
process from a statement in only the problem
domain, through many modelling domains,
into the final target domain.

5660

LISP
modelling domains executable
Figure 4. Domains in the Refinement Process

The systems designer works with the
refinement mechanism in one domain at a
time. In a developing program there may be
multiple instances of a domain, the
refinement mechanism may be directed to
scan all instances during refinement or a sin-
gle one. The concept of domain here is very
useful in supplying a psychological set to the
systems designer (i.e., the designer must only
consider and think about the objects and
operations of one domain at a time.)

Locales Ald in the Reflnement of
Efficient Programs

Within an instance of a domain a sys-
tems designer may limit the refinement
mechanism to a locale within that instance.
Typically the locale would be tightened
about an "inner loop” of the program which
has been determined from a previous
refinement. Here the systems designer would
want to go through the available refinements
very carefully and choose more elaborate and
efficient implementations. Once these deci-
sions have been made the locale may be
enlarged up to the size of the original
instance and the refinement mechanism con-
sistency checker will make sure that all
implementations chosen are consistent with
the very fancy implementations in the inner
loops.

Tactics for Reflnement

The domain and locale concepts limit
the scope of what the systems designer has to




think about. The refinement tactics limit the
sheer number of decisions the systems
designer must make.

The tactics are domain independent
rules for making refinement decisions. They
are not guaranteed to make a decision and
when they don’t the systems designer must
make the decision. Tactics must obey the
refinement consistency checker just as the
systems designer must. Some example tactics
are summarized below:

1. If we've already defined a function
which implements this component then
use that function.

2. If there is a refinement to this com-
ponent which can be made into a func-
tion then use it as a function.

3.  Use the default refinement for the com-
ponent (the first one specified) with the
default instantiation (the first instantia-
tion specified.)

4. Use the refinement with the minimum
number of assertions and conditions.

The Draco approach to rapid prototyping is
to build tactics which use the default
refinement under the default instantiation.
These refinements are usually very general
(i.e., few conditions and assertions) but
expensive in time and space. Very little
interaction is required from the systems
designer in this case other than selecting the
domains and using the rapid prototyping tac-
tics.

We refer to this mechanism as tactics
because policy decisions are made without
respect to the global context and Draco
domain organizational structure. We expect
to investigate refinement strategies and will
discuss these later.

Recording the Refinement Process

The refinement process does not
proceed strictly top-down or from one
language level to another. In fact, sometimes
it is necessary to back-up the refinement pro-
cess to remove an overly restrictive decision.
As the process proceeds a refinement history
is recorded which can supply a top-down
derivation for each statement in the resulting
executable program. There are two uses for
this refinement history: to understand the
resulting program and to guide the
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refinement replay of the problem if the origi-
nal specification is changed and a new imple-
mentation is needed (Wile, 1982). We have
found that the refinement history is much
larger than the resulting program code.t This
large amount of information is lost to some-
one attempting to reuse an existing piece of
source code.

In general we have found the making of
decisions to proceed as shown in figure 5.

many
decisions

few
decisions

specification executable code

Figure 6. Decisions Pending versus Abstraction Level

The number of decisions to be made rises ini-
tially as implementation decisions must be
made in the modelling domains and decreases
finally as the already made decisions con-
strain the remaining decisions to only one
choice. The intermediate modelling swell of
this graph is the largest barrier to refinement.

DOMAIN SPECIFIC SOURCE-TO-
SOURCE PROGRAM TRANSFOR-
MATIONS

It should be possible to refine a state-
ment in any domain without the use of pro-
gram transformations. The transformations
which state rules of exchange between state-
ments in a domain language and statements
in that same domain language (i.e., source-
to-source transformations.)

The primary use of the transformations
is to optimize a domain language program. In
general, the transformations are simple
enough that they are seldom of use on a
domain language program written by systems
designer. The transformations are usually
obvious statements. The following might be
transformations in a simple low-level
language.

tOur best estimate is that the refinement history is
about 10 times the size of the resulting source code.



ADDx0: x40 => x
MPYx0: ?x¢0 => 0
IFTRUE: IF TRUE THEN ?s1 ELSE ?s2 => ?s1

However, when a very general refinement of a
component is used in a specific context the
Left-Hand-Sides (LHS) of these simple rules
of exchange tend to appear. Thus, the pro-
gram transformations specialize the
refinements of components to their use in a
specific system at levels of abstraction far
above that of executable code.

The transformations do not make or use
implementation decisions but they do change
the execution of the program. Certain side-
effects must be checked or prohibited. The
type and checking of these enabling condi-
tions is discussed in (Standish et. al., 1976).
As an example, in the transformation MPYx0
above the fact that the code fragment ?x does
not write any data as a side-effect must be
checked. These effects are usually not
checked in Draco because we attempt to
build languages to prohibit the side-effect
style.

The Transformation Naming Problem

A domain may easily have more than
two thousand transformations and we do not
believe having the systems designer
remember all the names or look them up in a
catalog would be very successful. In the early
program transformation systems the user
would decide where to apply each transfor-
mation and which transformation to apply.
This would be chaos in a Draco development
with large systems and many domains.

In Draco all program fragments held in
the internal form are annotated with all the
program transformations which could apply.
This includes domain language programs
which have been parsed, refinement code
bodies, and the RHS of all transformations.
Thus, the systems designer never suggests
transformations but instead solicits sugges-
tions from Draco as to which transformations
can be applied to a given program fragment.

As some transformations are applied
they suggest still other transformations which
could apply. The scheme which keeps this
process going is the interpretation of transfor-
mation metarules. The metarules relate the
transformations of a domain to other
transformations in that domain (Kibler,
Neighbors, and Standish, 1977). They are cal-
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culated as transformations are added to the
transformation library of a domain. As an
example metarule, the RHS of the transfor-
mation MPYx0 would contain a metarule
which would suggest the transformation
ADDx0 at a higher context because the LHS
of ADDx0 contains a 0 and MPYx0 intro-
duces a 0 into the program.
Controlling the Transformation
Mechanism

If there are symmetric transformations
in the transformation set {and this is usually
the case) the the transformation mechanism
must be carefully controlled. Two low-level
symmetric transformations are:

(IF *p THEN 151 FLSE 's2)#?x > (IF tp THEN ?s1#?x F1LSE ?s2#tx)
(IF *p THEN 1s1#?x ELSE ts2ex) => (IF *p THEN ?s1 FLSE 1s2)

The transformation mechanism in general
only applies its transformations to the
domain locale selected by the systems
designer. Each transformation has an applica-
tion code (a number between 00 and 99) and
these are used to form groups. The diflerent
groups are:

100 and up Markov Algorithm actions
90-99 simplifying transformations

80-89 canonical form

60-79 operator arrangement

40-59 flow statement arrangement
20-39 program segment arrangement
10-19 reverse canonical form

00-09 Markov Algorithm invocations

Thus in the case of symmetric transforma-
tions they must not both be in the same
group. The transformations suggested in a
particular place in the program are tried in a
strict highest application code first order. The
systems designer performs transformations by
specifying the application code range or the
group name for the transformations in the
locale to be tried.

The Markov algorithms mentioned are
a scheme for producing procedural results
such as data-flow analysis and type propaga-
tion from a cooperating set of source-to-
source  transformations with  metarule
interpretation.

The Importance of Performing Source-
to-Source Transformations at the Right



Level of Abstraction

Assume that we have the transforma-

tiont
EXPx2: 72 => x*?x

in the SIMAL language which converts an
exponentiation to a multiply in a special case.
This transformation is actually a manipula-
tion of the exponentiation component
presented in figure 3. Once again we must
apologize for using such a low-level language
with the goal of having a common language
of discourse. The concepts we will discuss
apply equally to the much higher-level, less-
general domain languages.

Given the above transformation and the
Taylor expansion refinement from the EXP
component in figure 3, then figure 6 presents
the possible actions to refine the SIMAL
exponentiation operator into LISP with no
exponentiation operator.§

SIMAL @_26_‘1 of MPY
XX (+TIMES X X)

EXPx2 many LISP,
transform transformations
X2 many SIMAL { LISP Taylor
Taylor expansion transformations expansion }
refinement of EXP 5
[[IFX<-O’I‘HENE((E’I‘ION; SIMAL to LISP

SUM =1; TOP:=2sLNX), TERM =1,
FOR L=1 TO 20 DO
| TERM —(TOF/I#TERM
SUM —=SUM+TERM ]
RETURN SUM ||

refinements

Figure 8. Possible Actionsona SIMAL EXP

Once the Taylor expansion has been used no
set of equivalence preserving program
transformations can achieve the same effect
as the EXPx2 transformation without recog-
nizing that a Taylor expansion is the mechan-
ijsm being used. Such transformations would
be far too specific to be useful. The problem
is far more aggravated when we map into a
language such as LISP which we are assum-
ing has no exponentiation operator. The
designer of the LISP domain would not
include transformations to recognize and deal
with a Taylor expansion. Clearly this exam-
ple is extreme in that we used an approzima-
tion, the Taylor expansion, to prove the

tEXPx2 requires the enabling condition that ?x be
side-effect-free.

{Most LISPs do have an exponentiation operator,
however, we are attempting an analogy between
high-level languages using low-level languages.
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point. If we had used the ”binary shift
method” of figure 3 many powerful SIMAL
transformations would have been required to
manipulate the results of the refinement into
a simple multiply as EXPx2 does.

In our experiments with Draco we con-
structed an Augmented Transition Network
(ATN) domain. An ATN is a class O parser
which runs in parallel execution to do natural
language parsing. We have had ATN
transformations remove states (the equivalent
of parse rules) from parser descriptions.
Extremely powerful transformations would
have no chance of removing these same states
from the resulting parallel executing LISP
program.

The point here is that truly powerful
optimization can be achieved with fairly sim-
ple mechanisms at the correct level of
abstraction (i.e., at the domain language
level.) These optimizations are far more
powerful than all of the classical optimiza-
tions (e.g., code motion, register allocation,
reuse of temp space, data flow analysis,
reduction in operator strength, etc.) which
are applied to general-purpose low-level
languages. The use of gource-to-source
transformations on domain languages is the
key to building efficient programs out of reus-
able and general software components.

WHAT CAN BE SAID ABOUT THE
POWER OF THE DRACO METHOD?

Given a collection of Draco domains
with their interdependencies and their CON-
DITIONS and ASSERTIONS we would like
to know what we can do with them. In par-
ticular, given a specific domain language pro-
gram, a set of domains, and a target domain
(an executable language), we would like to be
able to answer the following reusability ques-
tions.

1. Can we refine the domain language pro-
gram completely into the target
domain?

2. If so, can Draco provide an implementa-
tion for the given domain language pro-
gram?

3. If not, what extra
knowledge is needed?

implementation



A Petri net model of the implementation
decisions in the Draco domains can be con-
structed and the reusability questions can be
treated as the Petri net reachability problem.

In particular, we were surprised to find
that reusability questions 1 and 2 are decid-
able! Tt is unknown whether reusability ques-
tion 3 is decidable or not.

Since reusability questions 1 and 2 are decid-
able, then the problem of refinement deadlock
is decidable. The refinement deadlock prob-
lem plagues system designers and it occurs
when the designer makes an implementation
choice which will later on prohibit the pro-
gram from being refinable into a given target
domain. A program cannot be refined when
no consistent implementation exists with
respect to the implementation decisions
already made and implementation choices
known to Draco. After each decision the sys-
tems designer would like to know if a com-
plete refinement of the problem into the tar-
get domain still exists. Refinement deadlock
primarily occurs when the designer is using
elaborate refinements with many CONDI-
TIONS and ASSERTIONS.

The complexity of the Petri net reachability
problem prevents the straightforward use of
the results. The complexity of answering the
reusability questions for a medium-sized aug-
mented transition network refined into only
one other domain is approximately O(2"100).
We don't regard this terribly high complexity
as a real problem because in using full Petri
nets we are using far too general a model. We
suspect that a less general model and Al
planning techniques will suffice as a basis for
refinement strategies which are directly
aimed at the reusability questions.

CONCLUSIONS

The Draco 1.0 systemt became opera-
tional in 1979 (Neighbors, 1980a and 1980b).
We have found experimenting with a com-
plete prototype rewarding. The details and
results of these experiments have been
reported elsewhere (Neighbors 1980a, Gon-

tWe expect the next major version, Draco 2.0, to be
available in August 1983 at which time the em-
phasis will switch to the instrumental use of Draco.
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zales 1981, Sundfor 1983a and 1983b). Our
results and experience with the method is
summarized in the following sections.

Some real Draco domain language programs
are given in the appendix. The concepts
presented in this paper using low-level
language examples are really applied using
Draco to these high-level languages.

Reuse of Analysis, Design, and Code

We have found that the reuse of
analysis and design is much more powerful
than the reuse of code. We realize that in the
short-term the reuse of code has the largest
payofl and software producing organizations
should start to exploit this technology now
(Freeman, 1983). Code is very tricky to reuse.
Many of the analysis, design, and implemen-
tation decisions which went into its construc-
tion are absent from the code itself. Our
experience of refinement histories more than
10 times the size of the final code speaks for
the large amount of information missing in
just the code itself.

Domain Analysis and Design

Only about 10 or 12 full usable Draco
domains have been built and each has reen-
forced the idea that domain analysis and
design is very hard. Typically it takes some-
one who is an ezpert in a particular problem
area four months to just start to show pro-
gress with the domain. Even with well-
documented work such as the ATNs it takes
some time to read all the literature and
extract an appropriate set of objects and
operations. It takes further time to find an
appropriate syntax for these structures. This
is creative work and similar in scope to writ-
ing a book or survey paper on the area. As an
example, the domain analysis of tactical
display systems given by Sundfor (Sundfor,
1983a) is over 100 pages long.

One sure way to make the Draco
method fail is to take unexperienced person-
nel and have them observe the "old hands”
work to construct a domain. Its easy to con-
struct a bad domain and very hard to con-
struct a good one. The reasons are similar to
the reasons for the failure of extensible
languages (Standish, 1971).



Reusable Software and Efficiency

It is not true that software constructed

from reusable software components is
inefficient.
We have shown that using the Draco method
systems with different implementations and
different modular structures can be created.
Each of these has a different time-space exe-
cution characteristic.

In addition we discussed the use of
domain-specific transformations to provide
optimization at the correct level of abstrac-
tion which results in more powerful optimiza-
tions than usually available to users of
general-purpose languages.

The Draco Method

The Draco method described here pro-
vides a context where program transforma-
tions, module interconnection languages,
software components, and domain-specific
languages work together well in the construc-
tion of software.

From experience with Draco we submit
that usable software can be constructed from
reusable software components.
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APPENDIX

In the body of the paper we discuss Draco’s manipulation of high-level languages in terms of
analogies with low-level languages like SIMAL. This appendix presents program fragments from
actual high-level Draco domains.

Augmented Transition Network Example

The first example from (Neighbors, 1980a) presents an example the augmented transition
network domain.

Example ATN from both (Woods, 1970) and (Burton, 1976)

. Abbreviations
;. NP — noun phrase NPR == nomitive pronoun
H PPRT - past participle ADJ = adjective
; ITRANS = intransitive AGNTFLG = agent possible
;i TRANS == transitive DET - determiner
; FREP - preposition S-TRANS == sentence object
B PRO — pronoun AUXVERB = auxiliary verb
:from to | tests | actions
SENTENCE TToTTIToromnmroommmmnmmmomInnTreres
+Q1 class AUXVERB ! VERB: =word RCX)'IA
TENSE: =wor +TE\Y E)
TYPE: =’
’ Q2 none SUBJ <=NOUN- PHRASE )
TYPE: =’ DECLARE
Q1 Q3 | none | SUBJ<=NOUN-PHRASE
’Q2 +Q3 ) class VERB ! VERB: -u;;;'éoo"i; -------------
TENSE: =word | TENSE]
’Qa +Q3 class VERB ? put SUBJ on h;i:i ;;-l:ﬂ-’ -------
is word PPRT ! SUBJ NPT& 'someone) )}
VERB=’be UE
VmB -avord[ROOl‘]
' +Q3 class VERB ? TENSE: ~TENSE+’ PERFECT
is word PFRT ? VERB: =wo rd [ROOT|
VERB="have
' Q4 | is VERB TRANS ? | OBJ<=NOUN- PHRASE
' Q4 holding NP 1 OBJ::—remove NP from hold
is VERB TRANS
' exit | is VERB ITRANS t IS (TYPE TYPE%I(:NSUBJSUB
_ ' SE) (’V VERB)))
Q4 +Q7 l worde' by AGNTFLG: = FALSE
AGNTFLG='TRUE
' +Q6 word=’to mone TTTTTTTTTTTTee
is VERB S-TRANS?
' exit | none | <={’S (’TYPE TYPE%E\[SUBJ SUBJ)
VP E)
'V VERB) (’OBJ OBJ)))
&s Qs none suBy| -—oBJ T TTTTTTTT
TENSE| : <TENSE
TEMP: =’ DECLARE
TYPE]| : =<TEMP
OBJ <=VERB- PHRASE
’QO +Q7 word="by ACGNTFLG: = FALSE 77
AGNTFLG="TRUE
' exit | none | <=('S TYPE TYPE) ( ’ SUBJ SUBJ)
{'TNS %‘ENSE {'Vv V&B)
*OBJ OBJ))
&7 Q6 | none | SUBJ<=NOUN- PHRASE
VERB- PHRASE
+Q3 class VERB ? VERB: =word [ROOT]
is word UNTENSED!
NOUN- PHRASE
+NP1 | «class DET ? | DET:=word|[ROOT]
' 4NP3 | class NPR t | NFR:=word 777U
NP1 +NP1 | «class ADJ ? | ADJS —#ADJSiword [ROOT]
' +NP2 | class NOUN * | NOUN:—word[ROOT] 777
NP2 exit | none | <={'NP }’DEI‘ l.)'--)-;.-kb:l.;Al.):lé;
NP3 exit | none I ;;(:III;’.E'X:T-H-‘-I:\'%S; ...........
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Tactical Display Domain Example

The second example is part of a tactical display description abstracted from Sundfor (Sund-

for, 1983a). The example has been extensively edited in the interest of space and is not a com-
plete statement in the domain. In fact only a few statements in each of the major sections
remain to give the flavor of the language.

Targesdisplay by Sigmuand Sundfor o/
./
Definition of 2 sactical display subsyssem, called "Targetdisplay® e/
using the domain language for tactical displays on ship borae gun =/
consrol syssem. ./

Tactical display Targesdisplay

/.

Coafigurasion:
relasion own_ship [key id| of
id,
north, east,
X_position,Y_posision,Z_position,
'X_vclociti,Y_vclociIy,Z_vclocity,
roll,pisch, heading,
time_of_updase;
World model:
relasion classification [key id] of id, class;
Access t0o wor!ld model:
own_ship access is
{temp4 :=s own.name join ovn_gto‘raphic-pol.namo;%
tctdisplay own_ship(name,north,eass X _positioa,Y _posistion,Z _posision,
x_vnlocity.Y_vclacily,z_valociti,rolI?citch.hcsding,timn_ol_updntc)
.== {temp4(nasme,norsh,eass, X, Y,2, XV, ,ZV, R,P,C, clock);}
Commands and parameters:
on-off commands are
(gb,dinplay_only_ho-tilc,
pb_delese_id,
pb_colour_hostile_red,
pb_true_motionj;
Graphic represensation:
target graphic:
vector |length == 180 secoads
length limis == 50 knmots ;
time between history points == 180 seconds;
number of hissory points = 6;
alpha-aumeric is [digis(l..4) == sarges(number);];
targst symbols:

{friend, submarine == symbol arc, -8,0, 0,-8, 5,0));
frieand,surface - symbol circle, 5));

frieand,air - symbol arc, -5,0, 0,5, 8,0));

hostsile, submarine == symbol vector, -5§,0, 0,-8, 5,0));
hostile,surface ws 3 ymboi vector, -8,0, 0,-58, §,0, -5,0))
hossile,air - symbol vecsor, -8,0, 0,5, 5,0)),;

own_ship graphic:
velocity vector type = poins_to_edge_vector;
speed marker / speed vector iength = 180 seconds;
time between history points == 30 seconds;
aumber of hissory poiants == 6;
alpha numeric speed aad course display == truye;
screen posision of speed and course display = (480,900);

The tasks are asynchronous and policy scheduled by priority o
The tasks are:

when commaad is pb_display_ocaly_hostile

then
display all sarges where targes_casegory is hossile
every lsec, priority 2;

otherwise
dispiay alil targes every lsec, priority 2;

when command is pb_deless_id
then

show all starges graphic except alpha-numeric;
otherwise

show all targes graphic;

when commaad is pb_colour_hostile_red
then
colour al! target where category is hostile colour(1l);
colour all target where casegory is no¢ hossile coiour(2)
otherwisea
colour all targes colour(2);

display all cursor every 100msec, priority 1l;
colour all cursor coiour(3);

display all own_ship every lsec, priorisy 2;
colour aill owan_ship colour(2);



