Techniques for Generating Communicating Systems'

James M. Neighbors
Bayfront Technologies, Inc.?
James.Neighbors @ BayfrontTechnologies.com

Abstract: This position paper presents a simple triad model for generating communicating systems. We show a simple architectural and
instance example of the model as web services. This example demonstrates the inherent danger presented by detail, version and
configuration in attempting to maintain a model of concrete implementation instances by the generator. We point out that in the past
generators have solved this problem by forming private simple abstractions of implementation instances. Currently meta-definitional forms
such as XML are enjoying resurgence. Because of market forces these meta forms have complex version and configuration spaces. We
have found that the old technique of forming private simple abstractions of meta forms still works well to isolate the details, version, and
configurations of instance meta forms such as XML. Finally we discuss our belief that the formation of these private abstractions is the
creation of domain hierarchies.

Introduction: Triad Communicating Systems Model

The Analysis Model presented in Figure 1 is a simple triad communicating systems model we have found to be useful in
developing communicating systems. The triad Analysis Model breaks the parts of a communicating system into dataforms,
process, and protocol. The dataforms are the set of data produced and consumed by the process. The dataforms are also
prioritized, wrapped and unwrapped into data packets by the protocol. The process and protocol asynchronously message
each other with dataforms and protocol events.

Apache HTTP
process webserver Serverf2.0

{process)

(process)

producef

Consume Message
DTD
HTTPM A1
HTML HTTP XHTMLAM.0 RFC2616
wrap! detaform {protocol) Transitional rotocal
dataforms "™@P protocol () (dataform) i)
(process) {process)
webbrowser Microsoft
Internet
Explorer/5.50
Analysis Model Architectural Model Instance Model

Figure 1: Triad Communicating Systems Model and Examples
(level of abstraction decreases left to right)

As an example only the Architectural Model of Figure 1 shows two triads being combined to model the client-server
communications relationship of serving web pages. In this case the two triads may be combined into a communicating system
because they share a dataform (HTML) and a protocol (HTTP). The example Architectural Model is the level of abstraction
maintained by most generators. In other words if we wished to build a generator for web serving and browsing systems, then
the Architectural Model is the level of model maintained internal to the generator. The Instance Model of Figure 1 shows
why this is so. The Instance Model represents what one real world concrete implementation of this Architectural Model
might look like. Each element of the example Instance Model has a very complex detail, configuration, and version space. In
addition each element is under the control of a separate social organization (i.e., W3C, Apache, Microsoft, IETF). The
Architectural Model maintained by our hypothetical generator can’t be expected to maintain the day-to-day changes in a
collection of social organizations — many of which might lead to short-term incompatibilities. Classically generators (and
people) have resorted to feature subsets that are represented in the simpler Architectural Model maintained by our
hypothetical generator. In essence the classical defense that generators (and people) have used against low-level complexity
is to create a simpler model at a higher level of abstraction. The low-level complexity is then isolated to the refinements
from the higher level of abstraction. In addition the higher level of abstraction only has to characterize parts of the low-level
complexity that it wishes to use to solve its particular set of problems.

' This work was supported in part by U.S. National Science Foundation grant DMI-9960830.
* Author may be reached at Bayfront Technologies, Inc., B9-231, 1280 Bison, Newport Beach, CA 92660, USA.

Meta Models

Many groups have desired to uncouple the definition of data produced and consumed by a process from the implementation
of that process. The desire arises from the untenable position discussed in the previous section of attempting to maintain data
definitions or processes or protocols in a complex version and configuration space. It arises in all problem domains in
computing. It is particularly acute in communicating systems. The solution to this data problem has been to define data
separate from process as our triad model does. Meta data models have been used to define data in this way. A meta data
model is a description (possibly self descriptive) that characterizes the legal dataforms for a class of processes. XML is
currently the best known meta data model language [XML] but others such as Common Data Interface Format (CDIF)
[CDIF], Interface Definition Language (IDL) [S89], and Abstract Syntax Notation (ASN.1) [ASN] have existed for years.

meta meta 2
process process process
threaded
languages
produce/
consume message
meta meta meta’ meta 2
wirap/! dataform protocol dataform protocol
dataforms YW@ protocol XML, DL, SOL, POL, imports meta’
ASM.1, CDIF FShs process and protocol
defs and refines to
meta dataform
Analysis Model Meta Model Meta-Meta Model

Figure 2: Meta-Model Hierarchy
(level of abstraction increases left to right)

In Figure 2 we show the evolution of our simple triad Analysis Model into the first level Meta Model. Once again realize the
classical defense that generators (and people) have used against low-level complexity is to create a simpler model at a
higher level of abstraction. XML is an example of this defense related to dataforms. The Meta Model shown in Figure 2 also
naturally extends this defense to the protocol and process elements. Meta protocol languages do exist. An example is
Specification and Description Language (SDL) mostly used to define telephony protocols [SDL]. Bayfront Technologies
Computer-Aided Protocol Engineering (CAPE) product supports Protocol Description Language (PDL). Most protocol
description schemes are based on finite state machines (FSMs). As with the Instance Model of Figure 1 market forces have
recognized the power of meta dataforms and they struggle for control of them. The result once again is related families of
meta dataforms (e.g., XML) with complex detail, version, and configuration spaces. Once again we have no choice but to
erect the classical defense by establishing the Meta-Meta Model of Figure 2. The meta-meta dataform must abstract the core
elements of a family of meta dataforms such as XML showing and refining only the common definitions we wish to use in
our highest level triad model. An alternative approach we do not advocate is currently underway where each of the meta
dataform instances attempts to define all others.

Conclusions

What is this abstraction process where we are constantly defining a higher level of abstraction to avoid lower-level detail? In
my opinion it is the process of establishing a domain hierarchy under domain analysis [N98]. Notice that each of these levels
has a domain-specific language, optimizing transformations, and refinements to other domains [N89]. Why should we not use
code fragments directly in the generator? They have a detail, version and configuration space. Also they can prohibit the
production of non-code artifacts such as diagrams, simulators, and formal theory analysis [N96].

References

[ASN] ITU Abstract Syntax Notation 1, http://www.itu.int/ITTU-T/asn1/ or http://www.asn1.org/resources.htm

[CDIF] ISO Software & System Standards Common Data Interchange Format ISO/IEC JTC1/SC7/WG11 http://www.iso.ch/

[N96] Neighbors, James M., "The Benefits of Generators for Reuse", Panel: On the Future of Generators, Baxter, L., moderator Fourth
International Conference on Software Reuse, Sitaraman, M., editor, pp. 217, April 1996, Orlando, Florida, IEEE Press, 1996.
http://www.bayfronttechnologies.com/l02draco.htm#icsr4dg

[N89] Neighbors, James M., Chapter 12: "Draco: A Method for Engineering Reusable Software Systems", in Software Reusability,
Volume I: Concepts and Models, Ted Biggerstaft and Alan Perlis, Editors, ACM Frontier Series, Addison-Wesley, 1989.
http://www.bayfronttechnologies.com/l02draco.htm#awchap87

[N98] Neighbors, James M., "Domain Analysis and Generative Implementation", Panel: Linking Domain Analysis and Domain
Implementation, Frakes, W., moderator Fifth International Conference on Software Reuse, Devanbu, P., and Poulin, J.,
editors, pp. 356-357, June 1998, Victoria, Canada, IEEE Press, 1998. http://www.bayfronttechnologies.com/l02draco.htm#icsrSg

[SDL] ITU Specification and Description Language Standard Z.100, http://www.itu.int/ITU-T/studygroups/com17/sgl7-q13.html or
http://www.sdl-forum.org/Publications/Standards.htm

[S89] Snodgrass, R., The Interface Description Language, Computer Science Press, 1989.

[XML] W3C, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation 6, October 2000.
http://www.w3.org/TR/REC-xml

