00095

Prp -
AU R

2(8): 145
78 Avyitzy

PROGRAM MANIPULALION VIA AN EFFICIENT PRODUCTION SYSTEM*

D.F.

kibler, J.m. Neighbors and T.A. Standish

Department of Information and Computer Science
bniversity of California at Irvine

Irvine,

Introduction

Systems for program transformation
have been suggested by many authors
[Knuth, wWegbreit, Loveman, Balzer,
Standish2, Burstall s Darlington].
Several of these authors note that such
transformation systems ccould be used to
transform lucid, high-level, but possibly
inefficient program descriptions into
efficient but possibly lesgss legible
underiying concrete realizations., One
problem, mentioned by Loveman [Loveman} is
that of ¢haining together many Iow-level
simple transformations to achieve
high-~level goals. For example, we may
wilsn to chain together low-level
transtormations such as’ 'constant
propagation, performing arithmetic at
transtormation time, dead variable
elimination, empty statement removal and
the like, to achnieve the high-level goal
of projram simplification. 1This paper
shows one technique for organizing
sequences of low-level program
transformations within an interactive
programming medium to achieve nearly
automatic global program improvements with
low search times and minimal human
intervention and guidance.

The work reported here deals with the
development of a transformation system
based on a production system {Burstall &
Darlington and Loveman have implemented
transformation systems but the detailed
mechanisms are unpublished). To keep the
system within a manageable size, we have
not incorperated the technigues of globkal
flow analysis and algebraic simplification
although thney would fit into the framework
of a production based program manipulation
system. The paper consists of two major
sections and three appendices. The first
section discusses the use of production
systems and the second section snows how
an interactive program manipulaticon system
was implemented using a production system,

*

*this work was supported by the National
Sclence Foundation under Grant
DCR75-13875.

California

163

92717

The first appendix is an example worked
out in detail, the second appendix
contains a sample of the transformations
in the system, and the third appendix
contains example ocutputs from the systenm.

Production Systems

A pure production system [Davisl]
consists of a data base and a collection
of productions of the form LHS => RHS
where LHS and RHS are strings. If some
LHS matches a portion of the data bhase
then the matched segment is replaced by a
substituted copy of RKHS. Both LHS and RHS
are allowed to contain pattern variables,
i.e. wvariables which are bound by the
matching of LHS and instantiated in RHS.
Production systems typically involve two
extensive searches - a search of the data
base and a search of the space of
productions, A method for avoiding these
searches, distinct from the metarules of
Davis [Davis2] and the filtering
techniques of McDermott and Newell
[McDermott], is a technigue we call
chaining. The basic idea behind chaining
is that the successful firing of a
production contains information about what
to do next. We know where the production
was applied and what the possible effects
of the transformation were. The knowledge
of where the last production was applied
which we may search. The knowledge of
which production fired, and its context,
provides an index into the space of
productions. Both these forms of
knowledge can be derived automatically by
the system.

Let us assume, for the sake of
concreteness, that the data base has the
structure of a tree, Further assume that
we have a production system where each
pure production has been auvgmented by a
list of directions. Each direction
consists of a specification of a new
locality in the tree followed by a list of
productions that might be applicable in
that locality. Since the data base is
constantly changing we cannot aive an

S,

ey

|f
ap™0
o

dc&xk\ong (OP P2

absolute designation of the new locality,
rather, a relative direction must be
given. For tne tree structured data bases
& direction might appear as

{hEKE Pl P2 P3) or (UP PZ) where HERE
means the current locality and UP means
back up the tree one level to the
enclosing locality. The successful firing
of a production causes the first direction
to be tried. fThe other items are held on
an agenda. The agenda is a tree which
expands and contracts as the productions
are fired. At each possible locality in
the data base a corresponding node in the
agenda specifies a list of productions to
be attempted in that locality. The effect
of the agenda is to allow the most.
rtecently attached direction to be followed
first. Por the specific cage of a tree
Structured data base the agenda might be a
list of elements each of which represents
a2 locality encountered in a depth first
search of the tree. when the agenda is
empty, i.e chaining is completed, control
feverts back to that of a pure production
system.

Automatic Derivation of Directions

The directions for a particular new
production may be determined by comparing
its syntactic structure with those
productions already known to the system,
the idea is that if the RHS of a

production Pl matches s subtree of the LHS
of production P2 wi i
A2en 1hto account then the dirsction

taken 0 _acco
directjon list of
Similarly, if the LHS of a producticn
matches a subtree of the RHS of
production P2 with pattern variables taken
into account then the direction (HERE Pi)
is added to the direction list of P2. The
following example of an augmented
production system is abstracted from our
brogram manipulation system (see
footnote).
variables and small letters denote
constants.

Pl.

LHS RHS
Pl: (A [a BC D} E la B [ACE|ADE))
Pe: {b e X) ic)
P3: fd e x { X!
Dinections
Pi: (HERE PZ P3}{UP PI)
P2: {tP P2 P3)
P3: (UP P2 P3)
;;1; example was abstracted from _the
following productions:
Pl: (<KOp> ({if Bool X Y) 2)
=2 {if Bool ({<Op> X Z) (<Op> Y Z))

P2:
P3:

(times 6 X) -> (@)
(add B X) -> (Xx).

Capital letters denote pattern

164

for a large set of productions the
addition of a production may be costly,
but the cost ig only incurred once at the
time of addition. Notice that the
addition of a production only
incrementally affects the directions so
that an entire recomputation of the
directions is unhecessary.

The augmentation of a production
system does not interfere with the spirit
of production systems. It has the effect
of dynamically altering the order in which
the rules are applied and represents an
alternative mechanism for strategy, which,
unlike metarules, does not reguire
explicit declaration.

The Program Manipulation System

If & program manipulation system
contains enough power to do the 1sual
boolean identities, then the problem of
transforming a program to its ‘best’ form
is at least as hard as the problem of
boclean satisfiability, which is
NP-complete. Hence, our transformation
System consists almost entirely of
transformations which locally improve the
code, Despite this restriction placed on
our transformations, the system still
achieves global improvements by chaining
together local changes and is still
powerful enough to simplify many programs
{see appendix 3}. The augmented
production system discussed in the
previous section is a very natural way to
support certain basic program manipulation
tasks . The productions are program
transformations and the data base is the
program to be transformed. 1In our LISP
implementation of a production system
driven program manipulation system the
program is stored as a parse tree to avoid
brecedence, scoping and reparsing
problems. For example, if one does purely
syntactic matches on strings then the
transformation

Fd: X-X=> @

vields incorrect results when applied to
forms like 3/2-2. OQur pattern variables
match against subtrees of parse tree so
that

would not match the LHS of P4 which is

Here the symbol&denotes the fuil subtree
and not Jjust a single node.

Program transformations are different
from auwgmented productions in that some
useful transformaticns may occur only if
certain conditions hold on the pattern
variables at the time of application.
an example consider the following
transformation.

As

c*Y=Cc¥*Z =) Y=3

The transformation is certainly useful but
it can only be performed if ¢ is a nonzero
constant., This condition is called an

.. enabling condition [Standishl] and must be

checked in addition to matching the LHS of
the program transformation. Enabling
conditions can also be used as a strategy
mechanism in that some transformations can
be characterized as sacrificing space for
speed etc. and the enabling conditions
can reterence global parameters set by the
user specifying the constraints under
wnich his program is to be modified.

Some program transformations are not
amenable te the LHS -> RHS style of
presentation., Examples of such
transformations are useless assignment
elimination, constant propagatien and
empty statement elimination [Standishl}.
These transformations are hand written in
cur system as procedures but they can
still have enabling conditions, directions
and sometimes a LHS, The following
example shows a procedure oriented
transformation with a LHS.

WPONO S8 O™ (4. FoR T:= ¢ TO ¢ DO §

Iz

121

RHS: a procedure which substitutes
constant ¢ for gvery "right hapd"
cccurrence of I in 5.

lhe directions for the procedure oriented
transtormations must be user specified
except for those with an LHS for which
some directions can be automatically
produced.

Our initial program manipulation
system incorporates six procedural
transformations and forty-four syntactic
transformations similar in scale and scope
to those given in the Irvine Program
Transformation Catalogue ([Standishl].
initial test problem was the
simplification of a matrix multiplication
program under different assumptions about
the form of the matrices, e.gq. symmetric,
diagonal, triangular. The program to be
manipulated is the following.

The

165

FOR T:=1! STEP 1 UNTIL N DO
FOR J:=1 STEP 1 UNTIL N BO
BEGIN
ClI,J}j:=0;
FOK K:=1 STEP 1 UNTIL N DO
ClI,J]:=C{I,J]+A[L,K]|*B|K,J);
END;

If matrix A is asserted to be a symmetric

matrix (A[X,Y]=A[Y,X]) the system produces
the following program in approximately 19

seconds,

FOR I:=1 STEP 1 UNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO

BEGIN

C{I,J}:=0;

FOR K:=1 STEP 1 UNTIL I-1 DO
C[I,J):=C{I,J]+A[K,1])*B(K,J]:

FOR K:=I STEP 1 UNTIL N DO
C{I,J]:=C[I,J]+A[I,K]*B[K.J]:

END;

Notice that the resulting code requires
only half of matrix A to be stored. The
above example is worked in detail in
Appendix I. If matrix A is asserted to be
the identity matrix the system produces
the following program in approximately 39
seconds.

FOR I:=1 STEP 1 UNTIL KR DO
FOR J:=] STEP 1 UNTIL N DO
€{1,J]:=B{1,J);

Once one has proved that the
transformations in the system preserve
correctness, the transformations which
produced the above program constitute a
proof by program transformation that
multiplying a matrix by the identity
matrix simply results in a copy of the
original matrix.

Currently the directions attached to
each transformation are arranged in no
particular order. The ordering is clearly
important in that it specifies which
transformation is to be tried first and
which are to be tried later. Many
approaches to ordering this list for mere
efficient searches of the space of
transformations have been suggested
[McDermott, Davis2]., As an example the
list could be ordered by any of the
following means:

1) by the expense of performing the
transformation,

2} by the expense of trying the
transformation,

3) by the probability that the
transformation will fire,

4} by user intuition,

5} by a hybrid of the above methods.

Automatic methods of ordering the decision
lists are desirable since it enables a
naive user to enter a transformation

without worrying ahout the internals of
the system. We envision the ordering
process to be dynamic with the
transformation system having the ability,
in effect, to reject a suggested
transformation by ordering it so far back
in the direction lists in which it appears
that it is seldom attempted., The system
should modify the order in which to
attempt transformations from experience
with actual programs,

Conclusions

A production system based interactive
program manipulation system was built and
Bas proven to be efficient and flexible
tor our investigations. fThe results
reported here have dealt only with
transformations from one language inte
itself. Investigation of more powerful
transformations whlich can synthesize a
program from a high-level description of
that program in a restricted problem
domain is the next logical step in this
work.,

References

[Balzer]

Balzer, R., Goldman, N. ang Wile, b.
On the Transformational Implementation
Approach to Programming

2nd Intl. Software Engr. Conf.
Gct. 1976, San Francisco, pp. 337
[Burstall]

Burstall, R. ang Darlington, J.

A Transformation System for Developing
Recursive Programs

JACH volume 24, Number 1

PP 44-67 January 1977

{Davisl]

Bavis, K. and King, J.

An Overview of Production Systems
Technical Report STAN-CS-75-524
Stanford Computer Science Depar tment
October 1975

[Davis2]

Davis, R.

Applications of Meta Level Knowledge to
the Construction, Maintenance

and Use of Large Knowledge Bases
Technical Report STAN-CS-76-552

Stanford Computer Science Department July
1976

[Knuth] Knuth, D.

Structured Programming with GOTG
Statements

€. Surveys Volupme 6, Number 2
PP261-36) December 1974

166

{Loveman]

Loveman, D.

Program Improvement by Source-to~-Source
Transformation

JACM Volume 24, Number 1

PP 121-145 January 1977

[McLermott]

McDermott, D., Newell, A. and Moore, J.
The Efficiency of Certain Production
System Implementations

Technical Report Department of Computer
Science

Carnegie-Mellon University September 1976

{Standishl} \
Standish, T., Harriman, D., Kibler, D.

and Neighbors, J.

The Irvine Program Transformation
Catalogue

Computer Science Department

University of California at Irvine January
1976

[StandishZ} .
Standish, T., Kibler, D. and Neighbors,
Jt

Improving and Refining Programs by Program
Manipulation

Proceedings of the 1976 ACM national
Conference
pp 5B9-516 Houston, Texas Octoper 14Y/6

[Wegbreit}

wegbreit, B,

Goal-directed Program Transformation

IEEE Transactions on Software Engineering
SE-2, 2 pp270-285 June 1976

Appendix I - bDetailed txample

In this appendix we will show exactly
how our system performs its manipulation
of a program. For clarity the discussion
in the paper was somewhat simplified.

Each production consists of a four-tuple:
{enabling conditions, LHS, RHS, and
directions}. Directions may be of the
simple type discussed in the paper, but
usually they consist of a call to a
procedure LOOK-AT which examines a
decision tree and returns a list of
transformations which might be applicable
in the current locality. The input to
LOOK-AT is an operator or control
construct keyword and its operands,
example the transformation

For

{if B then C else D)*E
=>{1if B then C*E else D*E)

has the directions (HEkk

LOOK-AY (*,C,E)} {(HERE LUOK-AT(*,D,E)) and
{Ur LOCK-AT(HIUP,HIGPNS))} where HIOP
stands for the operator which would be
above the IF it the transtormation were
pertormed and HIOPNS stands for the
operands. Kkecall that the basic flow of
control is to try to apply the
transformation where specified in the
agenda. The successful firing of a
transformation results in possible
additions to the agenda by means of the
directions attached to each
transformation,

we will now step through the first
example mentioned in the paper. To see
the complete form of the transformations
applied consult Appendix 2, We start with
the initial conditions of the agenda being
empty and the locality enclosing the
entire matrix multiply program.

agenda= empty
locality= FOR 1I:=1 STEP | UNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO
BEGIN

Ci1I,J]:=0;

FOR K:=1 S1EP 1 UNWTIL N DO
CliI,d]:=C{I1,J)
+A{1,K}]*B[K,d]);

END;

Since the agenda is empty, contrel is left
with the user. He asserts that matrix A
is symmetric. Consulting with a small
base of stored facts the system constructs
the transformation

a[X,Y] => if X<{Y then z{X,Y] else a[¥,X]

which it names substitution. Remember the
convention that upper case letters in
transformations represent pattern
variables. The only direction on the
substitution transformation is (UP
LOOK-AT (HIOP,HICOPNS)). The substitution

167

transformation is placed on the agenda as
(HERE SUBSTITUTION}. The recommendation
on the agenda is tried and removed from
the agenda. The locality focuses on the
point in the program where the
transformation succeeded. In the case of
the above substitution the locality just
before the transformation succeeded was
AlI,K|. Afterwards it becomes IF I<K THEN
A[I,K]ELSE A[K,I]J. 1In this locality
HIOP=* and HIOPNS=(IF I<K THEN A[I,K)ELSE
AiK,I],B8]K,J]). The call

LOOK-AT (HIOP,HIOPNS) returns the name of a
transformation DISTIF<OP> which reflects a
decision to distribute the multiplication
over the IF statement., The direction (UP
DISTIFCOP>} is attached to the agenda.
Thus at the end of the firing of the
substitution transformation we have the
following agenda and locality.

agenda= (UP DISTIF<OP>)
locality= IF I<K THEN A{I,K]ELSE A[K,I]

Since the
continues

agenda is not empty the system
to apply transformations.

The UP changes the locality to
{IF I<K THEN A[I,K]ELSE A[K,1])*BI[K,J]

and DISTIF<OP> successfully fires. The
directions on DISTIF<OP> (see Appendix 2)
cause LOOK-AT to be called three times.

(HERE LOOK-AT(*,A[I,K],B[K,J]))

{BERE LOOK~-AT(*,A[K,I),B(K,J]))

{UP LOOK-AT (+,Cl1,J],IF I<K

THEN A[T,K]*B{K,J]tLSE A{K,J}*B[K,J]})

The first two calls to LOOK-AT do not find
any useful transformations and result in
nothing being added to the agenda. The
third call results in (UP DIST<OP>IF)
beiny added to the agenda reflecting the
decision to distribute the + over the IF
statement. Thus at the end of the firing
of the DISTIF<OP>IF transformation we have
the following agenda and locality.

agenda= (UP DISTKOP>IF)
locality= IF I<K THEW A{I,K)*B{K,J]
ELSE A{K,1]*B[K,J]

The form®and directions for each
transformation are given in Appendix 2.
From now on we will just show changes in
the locality and the agenda.

U

i
;!
[+ %

locality= IF IKK THEN A{I,K]*B(K,J}ELSE A{K,I]*B[K,J)] L lboman

U ap

locality= C{I,J)+(IF I<K THEN A[I,K]*B{K,J}ELSE A[K,I]*B[K,J}}
UDIST(OP)IE‘

locality= IF I<K THEN C{I,J]J+A[I,KJ*B[K,3|ELSE C{I,J]+A[K,1]*B[K,J)] :
agenda= {UP DISTCOP>IF) 2 look abescl

{}Up
locality= C{I,Jd}:=(IF IKK THtN C{I,J]+A[I,K]*B[K,J}
ELSE C[I,J]+A[K,I]*B(K,J])

U, DIST<OP>IF

locality= IF ICK THEN C[I,d]:=C[I,J]+A[I,K}*B[K,J) 5 Yoot ancad
ELSE C[I,J]:=C[I,J]+A[K,I]*BIK,JI
agenda= (UP HILEQSPLIT)

UUP

locality= FOR K:= 1 step 1 UNTIL N DO
IF I<K THEN CII,J]:=C[I,J]+A[I,K]*B[K,J}
ELSE CII,J):=CI[I,J)+A[K,I]*B[K,J)

U HILEQSPLIT

locality= IF 1<I &I<N
THEN BEGIN oo D
FOR K:=1 STEP 1 UNTIL I-1 DO
ClI,J}:=C[I,J]+A{K,1)*B[K,J];
FOR K:=1 STEP 1 UNTIL N DO
CiI,J|:=CII,J}+A[I,K]I*B{K,J];
END
ELSE
IF NOT IKN
THEN FOR K:=1 S1EP 1 UNTIL N DO
CiI,J]:=C{I,J)+A[K,I}*B[K,J)
ELSE FOR K:=1 STEP 1 UNTIL N DO
Cl1,J3]:=C[I,J]1+A[I,K]*B[K,J]

agenda= (TOP FORSMARTS1) {TOP FORSMARTSZ)

U TOP

locality= FOR I:=1 STEP 1 UNTIL M DO
FOR J:=1 STEP 1 UNTIL N DO

BEGIN
ClI,J]:=0;
IF lsI & ISN
THEN BEGIN
FOR K:=1 STEP 1 UNTIL I-1 DO
C[I,J]:=C[I,J]+A[K,I]*B[K,J};
FOR K:=I STEP 1 UNTIL N DO
Cl1,J] :=C[I,J}+A[I,K]*B[K,J];
END
ELSE
IF NOT IEN
THEN FOR K:=1 STLP 1 UNTIL N DO
CII,J]:=ClI,J]+A[K,I)*B[K,J)
ELSE FOR K:=l1 STEP 1 UNTIL N DO
Cly,J):=C{1,J]1+A[I,K]*B{K,J)
END;

The procedural transformation FORMARTS! builds a transformation for each FOR it

168

encounters

transformation asserts that in the body of the FOR statement the lower bound of the FOR
statement is less than or equal to the variable of iteration.

In the current case only 1<I=>TKUE does anything

5 tang tion

1<I=>TRUE
u - op&r tCﬁ
locality= IF TRUE & I<N
THEN BEGIN
FOR K:=1 STEP 1 UNTIL I-1 DO
CtI,J)+=C{l,Jj+A(K,I}*B[K,J];
FOR K:=1I STEP 1 UNTIL N DO
ClI,d}:=C[1,J]+A[1,K]*B[K,J};
END
ELSE
IF NOT I<XN
THEN FOk K:=1 STEP 1 UNTIL N DO
CIT,J]:=C[I,J]+A[K,I}*B[K,J]
ELBE FOR K:=1 STEP 1 UNTIL N DO
ClI,3]1:=C[I1,3]+A[I,R]*B[K,J]

agenda= (HERE BANDTX)

Note that the (TOP FORSMARTS2) is still on the agenda for the previcus locality. The most
recent things added to the agenda are done first

u ANDTX
locality= IF I<N
THEN BEGIN
FOR K:=1 STEP 1 UNTIL I-1 pO
C{I,J}:=C[I,J)+A[K,I)*B{K,J};
FOR K:=I STEP 1 UNTIL N DO
CII,J]:=C[I,J)+A[I,K}*B(K,J];
ERD
ELSE
IF NOT I<N
THEN FOR K:=1 STEP 1 UNTIL N DO
ClI,J]:=C{I,J]+A[K,I])*B(K,J])
ELSE POR K:=1 STEP 1 UNTIL N DO
C{I,J):=C[L,J]+A[J, K]|*B|K,J]

the transformation adds nothing to the agenda for the current locality.

The agenda for the current locality is empty So it starts enlarging the locality
until it finds a locality with something to do. If the agenda entry for each possible
locality in the program is empty then control reverts back to the user, 1In the current
case the only agenda entry is (TOP FORSMARTS2) which was placed on the agenda by
HILEQSPLIT., FORSMARTS?2 is similar to FORSMARTS1 except that it asserts that the variable
of iteration is less than or equal to the upper loop bound.

agenda= {TCP FORSMARTS2)

U TOP

locality= FOR I:=1 STEP 1 UNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO
BEGIN
ClI,J]:=0;
IF I<N
THEN BEGIN
FOR K:=1 STEP 1 UNTIL I-1 DU
C{I,J):= C[I,J)+A[K,I]*B[K,J];
FOR K:=I STEP 1 UNTIL N DO
ClI,J]+=C[I,d])+A[1,K]*B|K,J];
END
ELSL
IF NOT 1IN
THEN FOR K:=1 STEP 1 UNTIL N DO

169

C[I,J}:=C[I,J]+A[K,I]*B[K,J]
ELSE FOR K:=1 STEP 1 UNTIL N DO
C[I,J]:=C{I,JI+A[I,K]*B[K,J]
END;

U FORSMARTS?2
(only IKN => TRUE does anything)
2 substitutions

locality= IF TRUE
THEN BEGIN
FOR K:=1 STEF 1 UNTIL I-1 DO
C[I,J}:=C[I,J]+A{K,I]*B[K,J];
FOK K:=I STEP 1 UNTIL N DO
C[I,J]:=C[I,J]+A[I,K]*B[K;JI;
EwD
ELSE
IF NGT TRUE
THEN FOR K:=] STEP 1 UNTIL K DO
C{I,J]:=C[I,J]+A[K,I]*B[K,J]
ELSE FOR K:=] STEP 1 UNTIL N DO
C{I,J]:=C[I,J]+A[I,K}*B{K,J]

agenda= (HERE IFTRUEELSE) (HERE NOTT}
U IFTRUEELSE

locality= BEGIN
FOR K:=1 STEP 1 UNTIL I-1 DO
C[I,J]:=C[I,J]+A{K,I}*B[K,J]:
FOR K:=I STEP 1 UNTIL N bO
ClT1,3]1:=C[I,J]1+A[I,R}*B[K,J];
END

The (HERE NOTT) left on the agenda does not fire. All agenda entries are empty and
control reverts to the user. The original program has been transformed to the one shown
below

FOR I:=1 STEP 1 UNTIL N DO N
FOR J:=1 STEP 1 UNTIL N Do
BEGIN
ClI,J):=p;
BEGIN
FOR K:=1 STEP 1 UNTIL I-1 DO
C[I,J]:=C{I,J]+A[K,I]*B[K,J]:
FOR K:aI STEP 1 UNTIL N DO
C[I,Jj:=C[I,J]+A[I,K]*B[K,J];
END;
END;

Notice that the resulting program only requires half of matrix A to be stored.

170

Appendix 2 - Transformations Used in Appendix 1

In the following list of transformations, capital letters denote pattern variables,
The transformations are listed in the order in which they are applied in Appendix 1.
Enabling conditions have not been included.

name: substitution
pattern: {determined by constructing routine}
directions: (UpP LOOK-AT (HIOP, HIUPNS) }

name: DISTIF<QP>
pattern: {(if X then Y else Z)<op>w => if X then Y<OP>W elsge E<0P>W
directions: (HERE LOOK—AT{(OP),Y,H)){HERE LOOK—AT((OP),Z,W))(UP LOOK—AT{HIOP,HIOPNS}}

hame: DIST<OP>IF
batterns w<OP>{if X then Y else Z)=> if X then W<OP>Y else wW<OP>3
directions: (HERE LOOK-AT {<OP>,w,Y)) (HERE LDOK—AT{<0P>,W,Z])(UP LOOK—AT(HIOP,HIOPNS))

name: HILEQSPLIT
pattern: for %W:= X step 1 until ¥ do(if Z<W then 5 eise R) =>
1f X<Z & 2<Y then begin - :
for W:=X step 1 until 2-1 do R;
for W:=7 step 1 until ¥ do §
end
else
if not 2Z<Y then for W:=X step 1 until Y do R
T else for W:=X step 1 until Y do s
directions: (TOP FORSMARTS1) (TOP FORSMARTS2) (UP LOOK—AT(HIOP,HIOPNS}}

name: FORSMARTS1

action: a procedure which asserts that the lower bound of a loop is less
than or equal to the variable of iteration for all loops
in the locality.

directions: (UP LOGK-AT (RIOP, HIOPNS))

name: ANDTX
pattern: true & X=>X
directions: (up LOOK-AT (HI0P, HIUPNS))

name; FORSMARTSZ
action: a procedure which asserts that the variable of iteration is

less than or equal to the upper bound for all loops in the locality
directions: (UP LOOK-AT (HIOP, HIOPNS) }

name: IF TRUEELSE
pattern: if true then X else Y => X%
directions: (UP LOOK-AT (HIOP,HIOPNS))

name: NOTT

pattern: not true => false
directions: (UP LOOK—AT(HIOP,HIOPNS})

171

Appendix 3 - Transformation System Examples

The following examples demonstrate the capability of the prototype transformation
system. In all tnese examples the system begins with the standard program for multiplying
matrices and modifies the code according to the user’s specification. Each example is
performed in about 3k sec running om a PDP-1f in time-gharing mode. Usually about twenty
transformations are required and the user makes about one suggestion.

JUriginal matrix multiplication program;

FOK T:=] SIEF 1 UNTIL K DO
FOK Ji=1l STtk 1 UNTIL N DO
BEGIN
Cli,dji=m;
FOR K:=1 S5wkP 1 UNTIL N DO
C[I,J]:=C[I,J]+A[I,K]*8[K,J];
END;

Example 1. Matrix A is diagonal.

resuiting code: FOR I:=1 STEP 1 UNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO
CII,J):=A[I,I]*B{I,3]:

remark: Notice that the innermost loop is removed.

Example 2. Matrix A and B are diagonal,

resulting code: FOR I:=1 STEP 1 UNTIL N DO
BEGIN
POR J:=1 STEP 1 UNTIL I-1 DO ClI,J):=0;
Cll,LI):=A[1,1)*B(I,1};
FOR J:=I+1 STEP 1 UNTIL N DO ClI,3]:=8;
ElD;

remark: Notice mn multiplications and no additions are required in the resulting code.

cxample 3, matrix A is the identity.

resulting code: FOR I:=1 STLP 1 GLNTIL N DO
FOR J:=1 STEP 1 UNTIL N DO
Cli,J}+=B[1,d];

remark: In a sense we have a proof by program manipulation that multiplying a matrix by
the identity constitutes just copying the original matrix.

Example 4. Matrix A is lower triangular.

resulting code: FOR I:=1 STEP 1 UNTIL N DO
FOR J:1 STEP 1 UNTIL N DO
BEGIN
C{I,J]:=8;
FOR K:=I STEP 1 UNTIL N DO
C[I,J}:=C[I,J]+A[I,K]*B{K,J}:
ERD:

temark: A lower triangular matrix is one with zero entries above the main diagonal.
bxample 5. “Matrix A ana B are triangular.

resulting code: FOR I:=1 STEP ! UNTIL N DO
FOk J:=1 STEP 1 UNTIL N DO

172

BEGIN
ClI,Jd]:=0;
FOR K:=I S1EP 1 UNTIL J DO
ClI,d):=C[1,J}+A[I,J}*BIK,J]
END:

remark: Analysis shows [Standish2] that this program has six times the running speed of
the original. Also, the accessing of A and B requires that only half of these matrices

need be stored.

173

