
1Libraries versus Languages in the Reusability of Programming

James M. Neighbors
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92717

1983

1 The Two F ces of Reusability in Programminga

When we talk about the reuse of existing programs we must be careful in describing the goals of
the reuse. In some cases a programmer on a project is looking for a program part which can just
be “plugged in” without modification. In other cases the programmer is looking for a program
p a r t w h i c h h e c a n m o d i f y b e f o r e u s i n g . T h i s i s a n i m p o r t a n t d i s t i n c t i o n f o r s o m e o n e
contemplating the construction of a library of reusable program parts. In the first instance only
what the program part does need be stored while in the second instance both what the part does
and how it does it need be stored.

The reuse of program parts without modification has been terribly successful in the past and has
been invisible to the programmers requesting the reuse. The obvious example of this style has
b e e n t h e i m p l e m e n t a t i o n o f c o m p i l e r s b y l i n k a g e t o r u n - t i m e s u p p o r t r o u t i n e s . T h e u s e o f
c l a s s i c a l p r o g r a m l i b r a r i e s s u c h a s m a t h e m a t i c a l s u b r o u t i n e s s u p p o r t e d b y l i n k a g e e d i t o r s i s
another example of reuse of this type. The library is kept in an encoded form and thus cannot be
c h a n g e d b y t h e p r o g r a m m e r . T h i s a p p r o a c h h a s b e e n m o s t s u c c e s s f u l i n r e u s i n g l i b r a r i e s o f
mathematical functions since the data objects being manipulated by the programs are one of a
few different types of number representation. In the author’s opinion this type of reuse will not
fare well when the data objects being manipulated become more complex than simple numbers.

The reuse of program parts with modification with the aid of a machine has not been investigated
v e r y m u c h a s s u c h . M o s t o f t h e w o r k i n t h i s a r e a h a s c o m e f r o m r e s e a r c h o n a u t o m a t i c
p r o g r a m m i n g , p r o g r a m g e n e r a t o r s , c o m p u t e r - a i d e d s o f t w a r e e n g i n e e r i n g , a n d s p e c i a l i z e d
l a n g u a g e d e s i g n . I t a p p e a r s t o t h i s a u t h o r t h a t t h e r e u s e o f p r o g r a m p a r t s w i t h m o d i fi c a t i o n
without the aid of a machine is the major activity of detailed design and coding. Encyclopedic_______
w o r k s s u c h a s [K n u t h 6 8 , K n u t h 6 9 , K n u t h 7 3 , A h o 7 4] s e r v e a s g u i d e s s u p p l y i n g i n f o r m a t i o n
above the level of programming language code which tells the programmer what the part does_____
and how it does it. The “how” information allows the programmer to adapt the part to the system
under consideration.

In the author’s opinion significant increases in “programmer” productivity will only come from
the reuse of program parts with the aid of a machine. W believe that a major part of the solutione
to the “software crisis” will be the reuse of software. Further, we believe that in the long term the
key to the reuse of software is to reuse analysis and design; not code [Neighbors80a].

1. Unpublished position paper sent to the W rkshop on Reusability in Programming, ITT, 1983.o

2 Organizing a Collection of Software P rtsa

 2.1 Software P rt Librariesa

If we have the “what” describing the function of each software part in the collection, then one
straightforward way of organizing the collection is to put each part into a library of source code.
P tential users of the part would search through the “what” descriptions of the parts of the libraryo
and select the appropriate part. This is the scheme used by most source program libraries. The
problems encountered by this scheme are:

1. The classification problem of what is an appropriate language or scheme for specifying__________________
and searching “what” descriptions.

2. The search problem in that the burden of searching the library is placed on the potential_____________
user of a part. Quite often it is easier for a potential user to (re-)build a part from scratch
rather than find a part in a library and understand the constraints on its use.

I n a d d i t i o n , f o l l o w i n g t h e d i s c u s s i o n o f t h e p r e v i o u s s e c t i o n , i f t h e p o t e n t i a l u s e r i s l o o k i n g
t h r o u g h t h e l i b r a r y f o r a s o f t w a r e p a r t w h i c h c a n b e m o d i fi e d , s o f t w a r e p a r t l i b r a r i e s w i l l
encounter the following problems:

1. The structural specification problem of what is an appropriate language or scheme for__________________________
specifying “how” descriptions and constraints of usage between software parts.

2. The flexibility problem of what to make flexible and what to fix in the software parts put_______________
into the library.

T h e o v e r a l l l i b r a r y p r o b l e m i s a g g r a v a t e d b y a n d i n c r e a s e s t h e m a g n i t u d e o f a l l t h e o t h e r
problems. If the parts in the library are to be modified and reused then they must be small to be
g e n e r a l , fl e x i b l e , a n d u n d e r s t a n d a b l e . H o w e v e r , i f t h e p a r t s i n t h e l i b r a r y a r e s m a l l t h e n t h e
n u m b e r o f p a r t s i n a u s a b l e l i b r a r y m u s t b e v e r y l a r g e . T h e s e t w o o b j e c t i v e s a r e a l w a y s i n
c o n fl i c t . I f a l i b r a r y c o n t a i n s m a n y s m a l l p a r t s t h e n i t l e s s e n s t h e s t r u c t u r a l s p e c i fi c a t i o n a n d
flexibility problems at the expense of increasing the classification and searching problems. If a
l i b r a r y c o n t a i n s a s m a l l n u m b e r o f l a r g e p a r t s t h e n i t l e s s e n s t h e c l a s s i fi c a t i o n a n d s e a r c h i n g
problems at the expense of increasing the structural specification and flexibility problems.

2.2 Specialized Languages

An alternative to using program libraries is to use specialized languages as a surface form to tie
t o g e t h e r s o f t w a r e p a r t s . A s a h i s t o r i c a l e x a m p l e c o n s i d e r F O R T R A N n o t a s a p r o g r a m m i n g
language but as a surface description scheme for tieing together the software parts which make
up the FORTRAN run-time library. W uld FORTRAN have been nearly as successful if it hado
b e e n p r e s e n t e d a s a “ l i b r a r y o f i n t e r e s t i n g a n d u s e f u l n u m e r i c i n p u t , c a l c u l a t i o n , a n d o u t p u t
r o u t i n e s w i t h d e s c r i p t i o n s ” ? I n t h e a u t h o r ’ s o p i n i o n j u s t a l i b r a r y w o u l d n o t h a v e b e e n a s
successful because the burden of using the library is placed upon each and every potential user of
t h e l i b r a r y . H a v i n g a s u r f a c e l a n g u a g e w h i c h t i e s t h e l i b r a r y t o g e t h e r r e m o v e s t h i s b u r d e n .
KLONE and PLANNER are more recent examples of this technique in a problem domain far
removed from FORTRAN. These are problem-domain specific languages.

– 2 –

3 Draco and the Reusability of Programming

F r t h e p a s t s i x y e a r s w e h a v e b e e n w o r k i n g o n a p r o g r a m g e n e r a t i o n s y s t e m c a l l e d D r a c oo
[Neighbors80b] which uses specialized languages to capture and reuse the analysis of a particular
problem domain. Programs in these languages are refined into other specialized languages using
very small, very flexible software parts. The software parts (we call components) represent the
r e u s e o f d e t a i l e d d e s i g n w h i l e t h e u s e o f o n e s p e c i a l i z e d l a n g u a g e t o i m p l e m e n t a n o t h e r
r e p r e s e n t s t h e r e u s e o f a r c h i t e c t u r a l d e s i g n . E v e n t u a l l y t h e d e s i r e d s y s t e m i s m o d e l e d i n a
conventional executable language. During the process of restating one specialized language in
a n o t h e r (w e c a l l t h i s r e fi n e m e n t) s o u r c e - t o - s o u r c e p r o g r a m t r a n s f o r m a t i o n s a r e u s e d i n a

 specialization role to remove any unused generality. This enables us to use large numbers of very
small and very general software components in the development of many systems.

4 References

[Aho74]
Aho, A.V., Hopcroft, J.E., and Ullman, J.D.
The Design and Analysis of Computer Algorithms
Addison-W sley, 1974.e

[Knuth68]
Knuth, D.E.,
The Art of Computer Programming. V lume 1: Fundamental Algorithms,o
Addison-W sley, 1968.e

[Knuth69]
Knuth, D.E.,
The Art of Computer Programming. V lume 2: Seminumerical Algorithms,o
Addison-W sley, 1969.e

[Knuth73]
Knuth, D.E.,
The Art of Computer Programming. V lume 3: Sorting and Searching,o
Addison-W sley, 1973.e

[Neighbors80a]
Neighbors, James M.,

Software Construction using Components,
Ph.D. Dissertation, T chnical Report UCI-ICS-TR160,e
Department of Information and Computer Science,
University of California, Irvine, 1980.

[Neighbors80b]
Neighbors, James M.,

Draco 1.0 User Manual,
T chnical Report UCI-ICS-TR157,e
Department of Information and Computer Science,
University of California, Irvine, 1980.

– 3 –

