
Draco: A Method for
1Engineering Reusable Software Systems

May 1, 1987

James M. Neighbors
Bayfront T chnologies, Inc.e

This work was published in final form as: Neighbors, J.M., “Draco: A Method for Engineering
R e u s a b l e S o f t w a r e S y s t e m s ” , C h a p t e r 1 2 o f S o f t w a r e R e u s a b i l i t y , V l u m e 1 : C o n c e p t s a n do
M o d e l s , B i g g e r s t a f f , T . J , a n d P r l i s , A . J . , e d s . , A C M P r e s s F r o n t i e r S e r i e s , p p . 2 9 5 - 3 1 9 ,e
Addison-W sley, 1989.e

S y s t e m A n a l y s i s , D e s i g n a n d A s s e s s m e n t t h e o r i g i n a l a u t h o r a f fl i a t i o n w a s a c c q u i r e d b y
Bayfront T chnologies, Inc. in 1995.e

1. This work was supported by the National Science F undation under grant MCS-81-03718 and by the Air F rce Office of Scientifico o
Research (AFOSR).

Contents

1 Introduction . 2
2 Methods of Software Reuse . 3

2.1 Libraries of Reusable Components . 3
2.1.1 Problems with Software P rt Libraries 3a
2.1.2 The Overall Library Problem . 4
2.1.3 Specialized Languages . 4

2.2 Narrow Spectrum Transformational Schemes 4
2.2.1 Problems with the Narrow Spectrum Transformational

Approach . 5
2.3 Wide-Spectrum Transformational Schemes 6

2.3.1 Problems with the Wide-Spectrum Transformational
Approach . 6

2.4 Summary . 7
3 The Draco Approach . 7

3.1 Purpose and Viewpoint . 7
3.2 Organizational Use of Draco . 7
3.3 Architectural Design of the Draco Approach 9

4 What Comprises a Domain Description . 9
4.1 P rser . 9a
4.2 Prettyprinter . 9
4.3 Optimizations . 10
4.4 Components . 10
4.5 Generators . 11
4.6 Analyzers . 11
4.7 Domain Description Summary . 11

5 The Nature and Structure of Domains . 11
5.1 Application Domains . 12
5.2 Modeling Domains . 12
5.3 Execution Domains . 13

6 The Draco Mechanism . 14
6.1 The Basic Refinement Cycle . 15
6.2 Managing the Refinement Process . 15

6.2.1 Refinement Strategies and T ctics . 16a
6.3 The Structure of the Developing System . 17
6.4 The Notation of the Refinement Mechanism 17
6.5 SubSystems as Major P rts . 18a

7 Experience With The Draco Approach . 18
7.1 Reuse of code . 18
7.2 Efficiency of Systems Built from Reusable P rts 19a
7.3 The Problem of Domain Analysis . 19
7.4 Future . 20

i

1 Introduction

Everyone is looking for an order of magnitude increase in the production of software systems;
but, historically, such increases have never been achieved. Certainly such an increase will not be
t h e r e s u l t o f s i m p l e e x t e n s i o n s o f c u r r e n t t e c h n i q u e s . M a n y f a c t o r s h a v e c o n t r i b u t e d t o t h e
current “software crisis”.

• The price/performance ratio of computing hardware has been decreasing about 20% per
year [Morrissey79].

• T h e t o t a l i n s t a l l e d p r o c e s s i n g c a p a c i t y i s i n c r e a s i n g a t b e t t e r t h a n 4 0 % p e r y e a r
[Morrissey79].

• A s c o m p u t e r s b e c o m e l e s s e x p e n s i v e , t h e y a r e u s e d i n m o r e a p p l i c a t i o n a r e a s a l l o f
which demand software.

• The cost of software as a percentage cost of a total computing system has been steadily
increasing. The cost of hardware as a percentage cost of a total computing system has
been steadily decreasing [Boehm81].

• The productivity of the software creation process has increased only 3%-8% per year for
t h e l a s t t h i r t y y e a r s [M o r r i s s e y 7 9] . T h i s i n c r e a s e i n p r o d u c t i v i t y i n c l u d e s a l l t h e
developments in software engineering and the development of higher-level languages.

• There is a shortage of qualified personnel to create software [Lentz80].

• As the size of a software system grows, it becomes increasingly hard to construct.

T h e “ s o f t w a r e c r i s i s ” i s n o t a p r o b l e m o f s m a l l s y s t e ms. Adequate methods exist for a single
programmer to produce 10k lines of high-level source code or five programmers to produce 50k
l i n e s o f h i g h - l e v e l s o u r c e . P r h a p s fi n d i n g p e o p l e w h o a r e f a m i l i a r w i t h t h e d e v e l o p m e n te
techniques is difficult, but the methods appear adequate. Software development becomes a crisis
when twenty people attempt to cooperate in the development of a 200k line system. Systems of
t h i s s i z e h a v e m u r k y a n d a m b i g u o u s s p e c i fi c a t i o n s . T h e s o c i a l i n t e r a c t i o n s o f t h e d e v e l o p i n g
team members become a major expense of time.

The interest in reusable software stems from the realization that one way to increase productivity
durin g t h e p r o d u c t i o n o f a p a r t i cular system is to produce less software for that system while
a c h i e v i n g t h e s a m e f u c t i o n a l i t y . T h i s c a n b e d o n e b y b u i l d i n g t h e s y s t e m o u t o f r e u s a b l e
s o f t w a r e c o m p o n e n t s a n d a m o r t i z i n g t h e c o s t o f d e v e l o p i n g t h e g e n e r a l s o f t w a r e c o m p o n e n t s
over the construction costs of many systems.

T h e D r a c o a p p r o a c h t o t h e c o n s t r u c t i o n o f s o f t w a r e f r o m r e u s a b l e s o f t w a r e c o m p o n e n t s
described in this paper neither deals with the important problems of organizational interactions of
d e v e l o p i n g t e a m m e m b e r s n o r m e t h o d s f o r t h e c o m p l e t e s p e c i fi c a t i o n o f s o f t w a r e s y s t e m s .
I n s t e a d w e f o c u s o n l y o n t h e c o n s t r u c t i v e a s p e c t s o f s o f t w a r e p r o d u c t i o n (a n a l y s i s , d e s i g n ,
implementation) under the assumption that with such an approach the number of development
team members producing a large system could be drastically cut and the specification clarified
using a rapid development feedback cycle with the original specifiers.

The first Draco prototype was completed in 1979[Neighbors80, Neighbors84b, Freeman87] and
the last major revision of the mechanism was completed in 1983[Neighbors84a]. Since that time

– 2 –

t h e i n s t r u m e n t a l u s e o f t h e m e c h a n i s m h a s b e e n s t r e s s e d t o u n d e r s t a n d i t s l i m i t s a n d p i t f a l l s
[Gonzalez81, Sundfor83a, Sundfor83b, Arango86]. This paper discusses the approach, including
what we perceive as necessary future changes to the method to attempt the construction of truly
l a r g e s y s t e m s . T h e s e c h a n g e s h a v e n o t b e e n i m p l e m e n t e d a n d e x p e r i m e n t e d w i t h o n r e a l
systems.

2 Methods of Software Reuse

B e f o r e w e d i s c u s s t h e D r a c o a p p r o a c h t o t h e p r o b l e m o f s o f t w a r e r e u s e i t w i l l b e u s e f u l t o
characterize the three basic approaches to the problem. These are extreme points of view along
which different approaches can be characterized. Of course, all approaches contain some aspects
of each view.

2.1 Libraries of Reusable Components

The most obvious approach to the problem of software reuse is to form libraries of software
 modules; but when we consider the reuse of existing programs we must be careful in describing

the goals of the reuse. In some cases a programmer is looking for a program part which can just
be “plugged in” without modification. In other cases the programmer is looking for a program
p a r t w h i c h c a n b e m o d i fi e d b e f o r e u s e . T h i s i s a n i m p o r t a n t c o n s i d e r a t i o n i n t h e d e s i g n o f a
library of reusable program parts. In the first instance only what the program part does need be
stored while in the second instance both what the part does and how it does it need be stored.

T h e r e u s e o f p r o g r a m p a r t s w i t h o u t a n y m o d i fi c a t i o n i s e x t r e m e l y s u c c e s s f u l . T h e o b v i o u s
e x a m p l e o f t h i s a p p r o a c h i s t h e i m p l e m e n t a t i o n o f c o m p i l e r s b y l i n k a g e t o r u n - t i m e s u p p o r t
routines. The use of classical program libraries supported by linkage editors is another example
of reuse of this type. This reuse is invisible to the programmers requesting the reuse. The library
is kept in an encoded form and thus cannot be changed by the programmer. This approach has
been most successful in reusing libraries of mathematical functions where the data objects being
manipulated are one of a few different types of number representation.

The reuse of program parts modified with the aid of a machine has not been investigated very
m u c h a s s u c h . M o s t o f t h e w o r k i n t h i s a r e a i s f r o m r e s e a r c h o n a u t o m a t i c p r o g r a m m i n g ,
program generators, computer-aided software engineering, and specialized language design. The
r e u s e o f p r o g r a m p a r t s m o d i fi e d w i t h o u t t h e a i d o f a m a c h i n e i s a m a j o r a c t i v i t y o f d e t a i l e d
d e s i g n a n d c o d i n g . E n c y c l o p e d i c w o r k s s u c h a s [K n u t h 6 8 , S e d g e w i c k 8 4 , P r e s s 8 6] s e r v e a s
g u i d e s s u p p l y i n g i n f o r m a t i o n a b o v e t h e l e v e l o f p r o g r a m m i n g l a n g u a g e c o d e w h i c h t e l l s t h e
p r o g r a m m e r w h a t t h e p a r t d o e s a n d h o w i t d o e s i t . T h i s “ h o w ” i n f o r m a t i o n a l l o w s t h e
programmer to adapt the part to the system under consideration.

2.1.1 Problems with Software P rt Librariesa

If we have the “what” describing the function of each software part in the collection, then one
straightforward way of organizing the collection is to put each part into a library of source code.
P tential users of the part would search through the “what” descriptions of the parts of the libraryo
and select the appropriate part. This is the scheme used by most source program libraries. The
problems encountered by this scheme are:

1. classification problem: What is an appropriate language or scheme for specifying and
searching “what” descriptions?

– 3 –

2. search problem: The burden of searching the library is placed on the potential user of a
part. Quite often it is easier for a potential user to (re-)build a part from scratch rather
t h a n fi n d a p a r t i n a l i b r a r y a n d u n d e r s t a n d t h e c o n s t r a i n t s o n i t s u s e a n d t h e
ramifications of its design decisions.

In addition, following the previous discussion, if the potential user is looking through the library
for a software part which can be modified, software part libraries will encounter the following
problems:

1. s t r u c t u r a l s p e c i fi c a t i o n p r o b l e m : W h a t i s a n a p p r o p r i a t e l a n g u a g e o r s c h e m e f o r
specifying “how” descriptions and constraints of usage between software parts?

2. flexibility problem: Which design and implementation decisions are flexible and which
are fixed in each of the software parts in the library.

2.1.2 The Overall Library Problem

T h e o v e r a l l l i b r a r y p r o b l e m i s a g g r a v a t e d b y a n d i n c r e a s e s t h e m a g n i t u d e o f a l l t h e o t h e r
problems. If the parts in the library are to be modified and reused then they must be small to be
g e n e r a l , fl e x i b l e , a n d u n d e r s t a n d a b l e . H o w e v e r , i f t h e p a r t s i n t h e l i b r a r y a r e s m a l l t h e n t h e
n u m b e r o f p a r t s i n a u s a b l e l i b r a r y m u s t b e v e r y l a r g e . T h e s e t w o o b j e c t i v e s a r e a l w a y s i n
c o n fl i c t . I f a l i b r a r y c o n t a i n s m a n y s m a l l p a r t s t h e n i t l e s s e n s t h e s t r u c t u r a l s p e c i fi c a t i o n a n d
flexibility problems at the expense of increasing the classification and searching problems. If a
l i b r a r y c o n t a i n s a s m a l l n u m b e r o f l a r g e p a r t s t h e n i t l e s s e n s t h e c l a s s i fi c a t i o n a n d s e a r c h i n g
problems at the expense of increasing the structural specification and flexibility problems. Some
interesting work dealing with these issues has been done[PrietoDiaz87].

2.1.3 Specialized Languages

An alternative to program libraries is to use specialized languages as surface forms to tie together
software parts. As an historical example consider FORTRAN not as a programming language but
a s a s u r f a c e d e s c r i p t i o n s c h e m e f o r t y i n g t o g e t h e r t h e s o f t w a r e p a r t s w h i c h m a k e u p t h e
FORTRAN run-time library. W uld FORT R A N h a v e b e e n n e a r l y a s s u c c e s s ful if it had beeno
presented as a “library of interesting and useful numeric input, calculation, and output routines
with descriptions”? Just a library would not have been as successful because the burden of using
the library is placed upon each and every potential user of the library. Having a surface language
w h i c h t i e s t h e l i b r a r y t o g e t h e r i n r e s t r i c t e d w a y s r e m o v e s t h i s b u r d e n . F a h l m a n ’ s
N E T L [Fa h l m a n 7 9] , t h e C C I T T p r o t o c o l d e s c r i p t i o n l a n g u a g e [C C I T T 8 4] , a n d M a l l g r e n ’ s
s p e c i fi c a t i o n o f g r a p h i c s l a n g u a g e s [M a l l g r e n 8 3] a r e a l l r e c e n t e x a m p l e s o f t h i s t e c h n i q u e i n
problem domains far removed from FORTRAN. These are problem domain specific languages.

2.2 Narrow Spectrum Transformational Schemes

I n a n a r r o w s p e c t r u m t r a n s f o r m a t i o n a l a p p r o a c h a s y s t e m d e s c r i p t i o n i s r e fi n e d t h r o u g h a
 discrete series of narrow spectrum languages. In the refinement of the system it is held in only

one language at a time and the system goes through stepwise refinement from one language to
t h e n e x t . E a c h d i s c r e t e l e v e l o f l a n g u a g e h a s i t s o w n m o d e s o f a n a l y s i s a n d m o d e l o f
c o m p l e t e n e s s . T h e l a n g u a g e s f o r d e s c r i b i n g t h e “ w a t e r f a l l ” s o f t w a r e e n g i n e e r i n g c y c l e a r e
narrow spectrum languages. Each is concerned with a different aspect of the developing system.
The following is a general description of the narrow spectrum languages found to be useful when
following the software engineering “waterfall” lifecycle model.

– 4 –

• Requirements languages capture the external environment in which the system under
c o n s i d e r a t i o n m u s t w o r k a n d t h e r e q u i r e d e x t e r n a l o p e r a t i o n o f t h e s y s t e m . I t i s t h e
interface specification of the proposed system with the rest of the world. Most system
requirements are captured in natural language.

• A n a l y s i s l a n g u a g e s capture the answer to the questions “Wh a t f u n c t i o n s a r e r e q u i r e d
w i t h i n t h e s y s t e m ? ” a n d “ W h a t i n f o r m a t i o n i s p r o d u c e d a n d c o n s u m e d b y e a c h
f u n c t i o n ? ” . T h i s i n f o r m a t i o n i s u s u a l l y c a p t u r e d i n t h e f o r m o f g r a p h i c a l d a t a fl o w
diagrams (DFDs)[Ross77, Gane79].

• Architectural Design languages focus on capturing the control flow of the developing
system to answer the questions “Which of these functions are tightly coupled in data and
c o n t r o l fl o w ? ” . T h e g o a l h e r e i s t o m i n i m i z e c o u p l i n g a n d m a x i m i z e c o h e s i o n . T h i s
i n f o r m a t i o n i s u s u a l l y c a p t u r e d a s g r a p h i c a l c o n t r o l fl o w h i e r a r c h y t r e e s w i t h d a t a
passing and sharing annotations [Y urdon79, Jackson76]. The result of this partitioningo
is a collection of tightly coupled functions and procedures called a module.

• D e t a i l e d D e s i g n o r I m p l e m e n t a t i o n l a n g u a g e s f o c u s o n t h e c o n t r o l fl o w w i t h i n a n
i n d i v i d u a l f u n c t i o n o r p r o c e d u r e , c o m p o s i t e d a t a d e fi n i t i o n s , a n d t h e d e fi n i t i o n o f i t s
interface with the rest of the system. The form is usually a pseudocode of control flow
constructs and function or procedure passed parameter declarations supported by a data
dictionary [Y urdon79, Caine75].o

2The languages described above are very general in their form and apply to all kinds of systems .
There is no direct relation between the use of the narrow spectrum transformational approach
and a narrow generality of systems produced. However, these general ideas can be tailored to a
s p e c i fi c p r o b l e m d o m a i n . J a c k s o n D e s i g n i s a n e x a m p l e o f s u c h t a i l o r i n g . J a c k s o n
Design[Jackson76] is a general model of the process of processing input forms, interacting with
a database and producing output reports. The general notations specified above are restricted in
Jackson Design to producing systems of this form.

F urth Generation Languages(4GLs) are simply program generators which carry thiso
tailoring process one step further. The process is so domain dependent that the translation
between the narrow spectrum languages can be carried out by a mechanical agent. However,
4GLs still go through the same narrow spectrum transformational approach concerned with the
same notations as the more general process outlined above.

2.2.1 Problems with the Narrow Spectrum Transformational Approach

Since the narrow spectrum approach captures a view of a developing system above the level of
program code, there is some hope that these analysis and design models could be reused. If these
models are formed into a library, these libraries will inherit all of the library problems mentioned
in the previous section. The more tailor e d v e r s i o n s o f t h e n a r r o w s p e c t r u m a p p r oach, such as
4GLs, are an example of the daily reuse of analysis and design.

The two basic problems specific to the narrow spectrum approach are:

• H o w d o w e m a k e t h e j u m p f r o m t h e n a r r o w s p e c t r u m l a n g u a g e w h i c h c u r r e n t l y
describes the system to the next abstraction level down?

2. With the possible exception of real-time systems which requires time constraints to be added to each of the language levels.

– 5 –

• Once we have made the jump from one abstraction level to the next, what do we do if
w e d i s c o v e r t h a t o u r w o r k i n t h e p r e v i o u s a b s t r a c t i o n l e v el was incomp l e t e ? C a n w e
backup without undoing all of the work we did to get here?

The top-down rigidity of the software engineering “waterfall” model of system development is
aa aspect of the second problem. Early proponents of the “waterfall” model did not intend it as a
s t r i c t l y t o p - d o w n p r o c e s s w i t h o u t b a c k u p [R o y c e 7 0] ; b u t , t h e d i f fi c u l t i e s d e v e l o p e r s h a d i n
dealing with the second problem caused it to evolve into such a process.

2.3 Wide-Spectrum Transformational Schemes

A w i d e - s p e c t r u m t r a n s f o r m a t i o n a l a p p r o a ch uses one wide spectrum lang u a g e t o d e s c r i b e t h e
3d e v e l o p i n g s y s t e m f r o m i t s r e q u i r e m e n t s t o i t s fi n a l i m p l e m e n t a t i o n l e v e l . T h e r e q u i r e m e n t s

statement is “transformed” (i.e., refined) into lower level constructs nearer to implementation. At
any one time the wide-spectrum statement of the system being refined will include statements
f r o m a l l o f t h e m o d e l i n g p h a s e s c o r r e s p o n d e n t i n t h e n a r r o w s p e c t r u m t r a n s f o r m a t i o n a l
a p p r o a c h (e . g . , t h e s t a t e m e n t c o u l d c o n t a i n d a t a fl o w c o n s t r a i n t s a s w e l l a s c o n t r o l fl o w
constraints). Thus, the wide-spectrum statement refined to the implementation level contains the
complete refinement history of the process. The wide-spectrum transformational approach is the
p r e d o m i n a t e a p p r o a c h i n k n o w l e d g e b a s e d a u t o m a t i c p r o g r a m m i n g [B a l z e r 8 1 , C h e a t h a m 8 4 ,
Smith85, W ters85, Green76].a

2.3.1 Problems with the Wide-Spectrum Transformational Approach

The wide-spectrum language must of necessity span quite a range of description from the model
of the external world in the requirements to the description of indivisible data item operations in
the implementation. The problem of using wide-spectrum languages for requirements is similar
to the problem of using very formal wide-spectrum languages (e.g., 2nd order predicate calculus)
for requirements. Prospective users of a wide-spectrum approach should be concerned with the
following questions:

• H o w i s k n o w l e d g e a b o u t t h e w o r l d e n c a p s u l a t e d f o r r e u s e u s i n g t h e w i d e - s p e c t r u m
language primitives so that we don’t end up describing standard high-level constructs
l i k e p h y s i c a l m a t t e r o r l o w - l e v e l c o n s t r u c t s l i k e p r i o r i t y q u e u e s o v e r a n d o v e r a g a i n
during the refinement of many requirements statements?

• What encapsulations come already provided?

• Can I change these encapsulations if they do not meet my needs?

• H o w c a n I b e a s s u r e d t h a t t h e l a n g u a g e w i l l n o t b e c o m e b l o a t e d a n d t h u s t o o
complicated to learn as new constructs are perceived to be needed on the many levels of
abstraction and in the many problem domains which the language must represent?

In order to capitalize on reuse, wide-spectrum approaches must provide a mechanism where the
g e n e r a l w i d e s p e c t r u m l a n g u a g e c a n b e t a i l o r e d t o c e r t a i n p r o b l e m a r e a s . O t h e r w i s e t h e r e i s
nothing to reuse and system descriptions must be stated in terms of first principles each time. The
w o r k o f p r o v i d i n g p r o b l e m d o m a i n s p e c i fi c c u s t o m i z a t i o n s o f w i d e - s p e c t r u m l a n g u a g e s i s
underway[Barstow85, Wile86].

3. The final implementation description only contains the control and data description constructs of a conventional high-level language
which could be compiled by a conventional compiler.

– 6 –

2.4 Summary

As stated earlier the viewpoints represented above are extreme and no system takes entirely one
v i e w . T h e D r a c o a p p r o a c h d e s c r i b e d i n d e t a i l i n t h e n e x t s e c t i o n b o r r o w s f r o m e a c h o f t h e
v i e w p o i n t s . I n p a r t i c u l a r , D r a c o u s e s a l i b r a r y o f p r o b l e m d o m a i n - s p e c i fi c n o t a t i o n s , e a c h o f
which is narrow spe c t r u m i n s c o p e . T h e s e a r e n o t a r r a n g e d i n a s t r i c t h ierarchy for step-wise
t r a n s l a t i o n a s i n t h e n a r r o w s p e c t r u m a p p r o a c h . I n s t e a d , a s i n g l e m e c h a n i s m w h i c h s p a n s t h e
complete wide-spectrum range of abstraction manages refinement using the knowledge specified
in all the known domains.

3 The Draco Approach

The Draco approach to the construction of software systems from reusable component parts is
strongly influenced by our viewpoint as practicing software engineers. The basic idea captures
the frustrating feeling that most of the system you are currently building is the same as the last
few systems you have built; but once again you are building everything from scratch. The current
system development is behind schedule and you have no time to figure out what this similarity
means.

3.1 Purpose and Viewpoint

Our point of view in the analysis and design of Draco is an engineering point of view. We
 are not trying to advance the state of the art in knowledge representation, language design,

parser generation, module interconnection languages, program transformations, or planning.
Instead we are a t t e m p t i n g t o d i s c e r n w h i ch techniques have been successful in these areas,
fuse them into an experimental system, and see where the system fails.

A s s o f t w a r e e n g i n e e r s w e a r e c o n c e r n e d w i t h h o w D r a c o w o u l d b e u s e d b y a n o r g a n i z a t i o n
engineering large, real systems. W are attempting to address the “software crisis” as describede

4above. This is not a crisis in building small systems but a crisis in building large systems.

3.2 Organizational Use of Draco

Figure 1 shows the flow of information between people in different roles external to Draco.

4. Although historically devices such as structure programming developed for use in large systems tend to aid the development of
small systems.

– 7 –

Figure 1. Organizational Context of Draco

Classically, during the system analysis phase of software construction a user with a desire for a
certain type of system would interact with a systems analyst who would specify what the system
s h o u l d d o b a s e d o n t h e a n a l y s t ’ s p a s t e x p e r i e n c e w i t h t h e s e t y p e s o f s y s t e m s . T h i s w o u l d b e
passed on to system designers who would specify how the system was to perform its function.

With Draco we hypothesize three new major human roles: the application domain analyst, the
modeling domain analyst, and the domain designer. An application domain analyst is a person
who examines the needs and requirements of a collection of systems which seem “similar”. We
have found that this work is only successfully done by a person who has built many systems for
different clients in the same problem area. W refer to the encapsulation of this problem area as ae
domain. Once the domain analyst has described the objects and operations which are germane to
a n a r e a o f i n t e r e s t t h e n t h e s e a r e g i v e n t o a d o m a i n d e s i g n e r w h o s p e c i fi e s d i f f e r e n t
implementations for these objects and operations in terms of the other domains already known to
D r a c o . T h e m o d e l i n g d o m a i n a n a l y s t p e r f o r m s a f u n c t i o n s i m i l a r t o t h e a p p l i c a t i o n d o m a i n
a n a l y s t , b u t i s m o r e c o n c e r n e d w i t h w h i c h n o t a t i o n s a n d t e c h n i q u e s h a v e b e e n s u c c e s s f u l i n
modeling a wide range of applications. The particular information needed to specify a domain is
given in the following section.

Once a set of Draco domains has been developed by an organization in their area of software
s y s t e m c o n s t r u c t i o n , t h e n n e w s y s t e m r e q u i r e m e n t s f r o m u s e r s c a n b e c o n s i d e r e d b y t h e
organization’s systems analysts in the light of the Draco domains which already exist. If a Draco
domain exists which can acceptably describe the objects and operations of a new system, then
the systems analyst has a framework on which to hang the new specification. This is the reuse of
analysis information and in our opinion it is the most powerful brand of reuse. Once the new
system is cast as a domain language notation then the systems designer interacts with Draco in
the refinement of the problem to executable code. In this interaction the systems designer has the
a b i l i t y t o m a k e d e c i s i o n s b e t w e e n d i f f e r e n t i m p l e m e n t a t i o n s a s s p e c i fi e d b y t h e d o m a i n

– 8 –

designers of the Draco domains. This is the reuse of design information and it is the second most
powerful brand of reuse.

T h u s , D r a c o c a p t u r e s t h e e x p e r i e n c e o f t h e “ o l d h a n d s ” o f t h e o r g a n i z a t i o n a n d d e l i v e r s t h i s
e x p e r i e n c e i n p r o b l e m s p e c i fi c t e r m s t o e v e r y s y s t e m s a n a l y s t i n t h e o r g a n i z a t i o n f o r t h e i r
education and use.

3.3 Architectural Design of the Draco Approach

From the above discussion of using Draco within an organization it is clear that there are three
b a s i c p o i n t s o f c o n c e r n t o t h e d i f f e r e n t u s e r s o f t h e a p p r o a c h : t h e i n d i v i d u a l d o m a i n s , t h e
interrelationships between the existing domains (i.e., the domain structure), and how the Draco
mechanism controls the refinement of a particular system. W shall deal with these individuale

 points in succeeding sections.

4 What Comprises a Domain Description

In this section we will describe the results of domain analysis and domain design which must be
given to the Draco mechanism to specify a complete domain. There are six parts to a domain
description:

4.1 P rsera

 The parser description defines the interface between the domain and the mechanism. There are
three parts to the parser description:

1. The external syntax of the domain and the internal form of the domain is described
in a conventional BNF notation which is augmented with control mechanisms such
a s p a r s e r e r r o r r e c o v e r y a n d p a r s e r b a c k t r a c k i n g . T h e i n t e r n a l f o r m i s a t r e e w i t h a n
a t t r i b u t e n a m e a n d d a t a a t e a c h n o d e . T h e i n t e r n a l f o r m i s t h e d a t a a c t u a l l y
manipulated by the Draco mechanism.

2. T h e p a r s e r d e s c r i p t i o n m u s t d e fi n e w h a t i s a w e l l f o r m e d f o r m u l a i n t h e d o m a i n ’ s
internal form. This is a semantic check on the combination of objects and operations in
t h e d o m a i n . T h i s s u b s u m e s a c h e c k t h e p r o d u c t i o n a n d c o n s u m p t i o n o f d a t a b y t h e
domain.

3. Finally, the parser description must specify the database schema for the information to
be maintained by the mechanism for the exclusive use of the agents of the domain.

As Draco manipulates the internal form of a domain, the parser description is the final arbiter of
what constitutes a valid notation in the domain both as a fragment of notation and as a complete
notation statement. This information can be used to prohibit or trigger the use of other domain
definitions by the mechanism. As an example, the refinement of an operation component in the
d o m a i n m a y b e h e l d u p u n t i l t h e s e m a n t i c c h e c k e r i s c o n v i n c e d t h a t t h e o b j e c t s i n p u t t o t h e
operation are semantically valid types.

4.2 Prettyprinter

The prettyprinter description tells Draco how to produce the external syntax of the domain for all
p o s s i b l e n o t a t i o n f r a g m e n t s i n t h e i n t e r n a l f o r m o f t h e d o m a i n . T h i s i s n e c e s s a r y f o r t h e

– 9 –

mechanism to be able to interact with users in the language of the domain and discuss incomplete
parts of the developing system.

Since the prettyprinter is the only agent of the domain which can communicate with the systems
designer, it must also be able to present the information gained from the other domain-specific
agents described below.

4.3 Optimizations

5T h e o p t i m i z a t i o n s r e p r e s e n t t h e r u l e s o f e x c h a n g e b e t w e e n t h e o b j e c t s a n d o p e r a t i o n s o f t h e
domain. Optimizations only work within the domain from which they were specified. They never
cross domain boundaries. There are three parts to the optimization specifications:

1. Source-to-source optimizing rules are simple source pattern to source pattern rewrite
rules similar to the source-to-source program transformation work[Kibler77].

2. S o u r c e - t o - s o u r c e o p t i m i z i n g p r o c e d u r e s a r e p r o c e d u r e s w h i c h m a y o r m a y n o t b e
triggered by a source pattern which take an instance of the domains internal form as an
argument and produces a new instance of the domains internal form.

63. Optimization application scripts describe possible structured interactions developed
 by the domain designer which the optimizing rules and procedures can provide to the

system designer. These can also be used as an element in refinement planning by the
refinement mechanism.

The output domain language fragment of all of the optimizers is subject to the scrutiny of the
p a r s e r d e s c r i p t i o n a s t h e fi n a l a r b i t e r o f a w e l l f o r m e d n o t a t i o n f r a g m e n t i n t h e d o m a i n . T h e
semantic equivalence of the optimized result is not checked. The optimizations are guaranteed to
be correct independent of any particular implementation (i.e., component refinement) chosen for
any object or operation in the domain. This ganularity of meaning is important and we will see
later how it provides us with powerful domain dependent optimizations.

4.4 Components

The software components specify the semantics of the domain. There is one software component
f o r e a c h o b j e c t a n d o p e r a t i o n i n t h e d o m a i n . T h e s o f t w a r e c o m p o n e n t s m a k e i m p l e m e n t a t i o n
d e c i s i o n s . E a c h s o f t w a r e c o m p o n e n t c o n s i s t s o f o n e o r m o r e r e fi n e m e n t s w h i c h r e p r e s e n t t h e
d i f f e r e nt implementa t i o n s f o r t h e o b j e c t o r o p e r a t i o n . E a c h r e fi n e m e n t i s a r e s t a t e m e n t o f t h e
semantics of the object or operation in terms of one or more domain languages known to Draco.
Thus component refinements cross domain boundaries. Conceptually, it is easiest to view each

7refinement as a macro body for the domain object or operation it represents. The macro body is
written in terms of other (perhaps the same but not usually) domain notations.

5. Previously these were referred to as transformations in the source-to-source transformation sense. However, since the wide spectrum
approaches refer to transformations as operations which make implementation decisions (i.e., refinement decisions) we decided on a
more appropriate name.

6. Previously these were specific to the mechanism and were called tactics

7. Simple macro expansion or instantiation inline with suitable systematic renaming is only one possible alternative for architectural
design. The applicative feel of the process, however, makes it a comfortable model.

– 10 –

C o m p o n e n t s a r e t h e o n l y p a r t o f a d o m a i n d e s c r i p t i o n w h i c h c r o s s d o m a i n b o u n d a r i e s (i . e . ,
components need to know about other domains) and these are patterns they are not procedures.
W do not use procedures for this function since the wide-spectrum mechanism must be able toe
analyze the possible inter-domain connections made by a component.

4.5 Generators

G e n e r a t o r s a r e d o m a i n - s p e c i fi c p r o c e d u r e s w h i c h a r e u s e d i n c i r c u m s t a n c e s w h e r e t h e
knowledge to do domain-specific code generation is algorithmic in nature. This is analogous to
program generators. The procedure is not doing an optimization task but actually writing new

 code in the domain. The construction of LR(k) parser tables from a grammar description and the
n o r m a l i z a t i o n o f d a t a b a s e s c h e m a s a r e t w o e x a m p l e s o f g e n e r a t o r s . A s w i t h o p t i m i z i n g
procedures, generators only operate and produce the internal form of the one domain where they
are described. The resulting output notation fragment is checked by the parser description.

4.6 Analyzers

Analyzers are domain-specific procedures which gather information about an input instance
 o f d o m a i n n o t a t i o n . A s w i t h a l l o t h e r p r o c e d u r a l s p e c i fi c a t i o n s i n a d o m a i n d e fi n i t i o n , a

particular analyzer only works with the specific domain where it was defined. As with all
domain-specific procedures, the data produced and consumed by each analyzer is kept under the
s c h e m a d e s c r i b e d i n t h e d o m a i n p a r s e r d e fi n i t i o n . T h e a c t u a l d a t a i s m a n a g e d b y t h e D r a c o
m e c h a n i s m w h i c h i s d e s c r i b e d i n a l a t e r s e c t i o n . D a t a fl o w a n a l y z e r s , e x e c u t i o n m o n i t o r s ,
theorem provers, and design quality measures are examples of analyzers.

4.7 Domain Description Summary

Thus, the basis of the Draco work is the use of domain analysis to produce domain languages.
Once a statement in a domain language has been parsed into internal form it may be:

1. Prettyprinted back into the external syntax of the domain.

2. Optimized into a statement in the same domain language.

3. T ken as input to a program generator which restates the problem in the same domain.a

4. Analyzed for possible leads for optimization, generation, or refinement.

5. I m p l e m e n t e d b y s o f t w a r e c o m p o n e n t s e a c h o f w h i c h c o n t a i n s m u l t i p l e r e fi n e m e n t s
w h i c h m a k e i m p l e m e n t a t i o n d e c i s i o n s b y r e s t a t i n g t h e p r o b l e m i n o t h e r d o m a i n
languages.

5 The Nature and Structure of Domains

S i n c e t h e s e m a n t i c s o f t h e c o m p o n e n t s o f o n e d o m a i n a r e d e s c r i b e d b y t r a n s l a t i o n i n t o t h e
components of other domains, a hierarchy of domains is formed . The structure of domains thus

8formed is a cyclic directed graph. Obviously, if we ever expect to produce executable systems,
some of the domains are the equivalent of some conventional programming language. These are
called executable domains. W define the level of abstraction of a domain with respect to ane

8. The graph is cyclic because in many case two modeling domains will use each other as modeling domains.

– 11 –

executable domain to be the longest acyclic path from any of the refinements of the domain’s
c o m p o n e n t s t o t h e e x e c u t a b l e d o m a i n . T h e d o m a i n s with the highest levels o f a b s t r a c t i o n a r e
called application domains while the domains in the abstraction levels between the application
domains and execution domains are called modeling domains.

T h e i d e a o f a h i e r a r c h y o f d o m a i n s c a m e f r o m e a r l y w o r k o n s o u r c e - t o - s o u r c e p r o g r a m
t r a n s f o r m a t i o n s [S t a n d i s h 7 6 , K i b l e r 7 7] . I n t h a t w o r k w e w e r e a t t e m p t i n g t o p e r f o r m t h e
s p e c i a l i z a t i o n o f a g e n e r a l h i g h - l e v e l l a n g u a g e p r o g r a m i n i t s s o u r c e f o r m s o t h a t t h e
programmer could see the modification. As an example, we would refine a general P scal matrixa
m u l t i p l y p r o g r a m u n d e r t h e s p e c i a l i z a t i o n t h a t o n e o f t h e m a t r i c e s w a s a n u p p e r t r i a n g u l a r
matrix. W would chain together many transformations, some specializations and some generale
c o m p i l e r - l i k e o p t i m i z a t i o n s , t o p r o d u c e t h e r e s u l t i n g p r o g r a m . C o n s i d e r t h e c a s e o f m a t r i x
multiplication with the identity matrix. In P scal the source-to-source transformation system hada
to work very hard to realize that a matrix multiply becomes a matrix copy. In APL it is a single,
t r i v i a l t r a n s f o r m a t i o n . A P L p e r f o r m s m a t r i x o p e r a t i o n s a t a h i g h e r l e v e l o f a b s t r a c t i o n t h a n
P s c a l . C l e a r l y , i t i s i m p o r t a n t t o p e r f o r m o p t i m i z a t i o n s a t t h e h i g h e s t l e v e l o f a b s t r a c t i o na
possible. W explored domain-specific high-level languages and discovered that not only weree
significant optimizations easier in these languages; but systems specification and synthesis were
also easier since they were free of low-level implementation details.

5.1 Application Domains

There are two kinds of domain analysts: those that primarily construct modeling domains and
those that primarily construct application domains. A database is not a complete application but
many applications use its services. It comes as no surprise that an accounting systems expert is
not a database expert; but most accounting systems use a database.

From our experience, application domains become a kind of “glue” which ties existing modeling
domains together in a restricted way. An accounting systems application domain would not allow
f u l l a c c e s s t o a l l o f a d a t a b a s e d o m a i n ’ s c a p a b i l i t i e s . I n s t e a d t h e a c c o u n t i n g s y s t e m s d o m a i n
would form a model of accounting objects and operations in the notation of the database domain.
A c c o u n t i n g o b j e c t s l i k e j o u r n a l s a n d l e d g e r s a r e e a c h a r e s t r i c t e d c l a s s o f g e n e r a l d a t a b a s e
o b j e c t s l i k e r e l a t i o n s . A l l j o u r n a l s a n d l e d g e r s i n a l l s y s t e m s c o n s t r u c t e d u s i n g a p a r t i c u l a r
a c c o u n t i n g s y s t e m s d o m a i n h a v e a c e r t a i n b a s i c f o r m . O f c o u r s e , t h i s b a s i c f o r m c a n b e
e x p a n d e d i n d i f f e r e n t w a y s i n c o n s t r u c t i n g d i f f e r e n t s y s t e m s ; b u t t h e c o r e d e s c r i p t i o n s o f t h e
a c c o u n t i n g o b j e c t s n e v e r c h a n g e . S i m i l a r l y , a n a c c o u n t i n g o p e r a t i o n l i k e p o s t i n g i s a s p e c i fi c
type of restricted database operation.

A n a p p l i c a t i o n d o m a i n a n a l y s t m u s t b e a b l e t o v i e w a l l o f t h e p o s s i b l e m o d e l i n g d o m a i n s a s
relatively simple data flow processes without worrying about all the details. As an example, one
model of a database is a process which when given a schema, a query or fact, and a database
p r o d u c e s a r e l a t i o n . A r e l a t i o n i s a s e t o f r e c o r d s w h i c h c a n b e g e n e r a t e d o n e a t a t i m e i n a
specified order. This is a very simple description of a very complex mechanism. It is not clear
w h a t i s d o n e d u r i n g r e fi n e m e n t a n d w h a t i s d o n e d u r i n g e x e c u t i o n . T h e a p p l i c a t i o n d o m a i n
analyst is really trying to do a data flow analysis model for one particular, familiar domain using
the basic building blocks of the modeling domains.

5.2 Modeling Domains

Most of the domains known to Draco will be modeling domains. A modeling domain is not a
complete application but the encapsulation of the engineering knowledge necessary to produce a
significant, but well-defined subpart of a complete application[Rowe78]. The concept of many
d o m a i n s s e t s t h e D r a c o a p p r o a c h a p a r t f r o m o t h e r a p p r o a c h e s t o s o f t w a r e r e u s e . A m o d e l i n g

– 12 –

domain creat e s p a r t i t i o n s i n t h e k n o w l e d g e n e e d e d t o c o n s t ruct systems, similar to the way a
module creates a partition in the control and data flow of the system itself. A system module is a
collection of functions, procedures, private definitions, and public definitions which performs a
significant, encapsulated function for the system as a whole. Analogously, a modeling domain is
a collection of objects, operations, optimizations, and semantic translations which encapsulates
the analysis, designs, and implementations of software parts which perform the major function
represented by the domain. This does not mean that the refinement of a domain will necessarily
m a p i n t o a m o d u l e i n t h e fi n a l s y s t e m . A s B a l z e r [B a l z e r 8 1] h a s d e s c r i b e d , “ t h e p r o c e s s o f
refinement is the spreading of information through the developing system”. Initially, however,
this information must be in one place.

In the preceeding description of a domain structure notice that we have scrupulously avoided the
r e fi n e m e n t o f o n e d o m a i n i n t o a n o t h e r b y a p r o c e d u r e . T h i s i s b y d e s i g n s i n c e i t c o u p l e s t h e

9d o m a i n s t o o t i g h t l y a n d m a k e s t h e k n o w l e d g e b a s e h a r d t o a n a l y z e . T h e m e c h a n i s m w h i c h
manages the refinement must be able to analyze the refinement process. Similarly, programmers
which manage the control and data flow in software systems must have modules in order to be
able to analyze the control and data flow process.

I n o u r e x p e r i m e n t s u s i n g t h e D r a c o m e t h o d , u n d e r s t a n d i n g w h a t i s a n a p p r o p r i a t e m o d e l i n g
d o m a i n s e e m s t o h a v e b e e n t h e h a r d e s t p r o b l e m . T h i s i s n o t a s u r p r i s e . D o i n g t h e m o d u l e
d e c o m p o s i t i o n o f a s i n g l e c o n c r e t e s y s t e m i s h a r d e n o u g h . T h e p a r t i t i o n i n g a n d s e l e c t i o n o f
domains in Draco is not driven by a single specification but by the domain analysts experience in
the construction of many systems. The best training for a domain analyst is to know computer
science and participate in the construction of many types of systems.

5.3 Execution Domains

In the beginning we assumed that there could be multiple executable domains, and, indeed, there
c a n ; b u t , b u i l d i n g e x e c u t i o n d o m a i n s r e p r e s e n t s a p i t f a l l f o r c o m p u t e r s c i e n t i s t s . C o m p u t e r
scientists are well trained in general control flow and data structure constructs. Thus, they are
domain experts in this area. Naturally, domain experts like to build and experiment with domains
in their area of expertise. The explosive growth in the number of general-purpose languages in

10the 1960s bears witness to this fact. In our early work we fell victim to this desire . W nowe
 believe that the selection of one executable domain, a base language, is the key to keeping the

focus on truly domain-specific languages.

Once a base language has been selected, the compiling can be left to the compilers and the truly
powerful application-specific domains can be explored. This does not mean that Draco could not
be used for the production of a compiler, it is just that the construction of compilers is not the
problem precipitating the “software crisis”. In our experience we have learned that the following
features are required of the base language.

• function/procedure parameter passing model: As the mechanism keeps track of the
system being refined many architectural design models are possible. A refinement may
be instantiated inline or a procedure may be created to save space. Without a model of
t h e p r o c e s s o f m a k i n g a p r o c e d u r e o r f u n c t i o n a n d p a s s i n g i n f o r m a t i o n t o i t , t h e
m e c h a n i s m b e c o m e s v e r y d i f fi c u l t . C o n s i d e r a t t e m p t i n g t o h a n d l e L i s p ’ s E X P R S ,

9. An analyzing system would have to understand the refining procedures and program understanding even in simple domains has not
been successful.

10. Some constructed domains: MC68000 assembly, Intel8080 assembly, Dec20 assembly, Lisp primitives, stack machine assembly,
SIMAL: an Algol-like language, RML: a P scal-like language with modules.a

– 13 –

F E X P R S , L E X P R S ; P s c a l ’ s c a l l b y v a l u e u n l e s s i t s a s t r u c t u r e ; a n d F O R T R A N ’ sa
ancient call by return value.

• m o d u l e , m o d u l e interco n n e c t i o n a n d s c o p i n g m o d e l : A s t h e m e c h a n i s m c o n s t r u c t s
n e w p a r t s o f t h e s y s t e m i t s o m e t i m e s n e e d s t o c r e a t e n a m e s t o c a l l t h i n g s a n d o n l y
enables certain other parts of the system to access them. Consider attempting to handle
Lisp’s dynamic scoping and P scal’s lexical scoping. In addition, the mechanism needsa
t h e c o n c e p t s o f m o d u l e a n d m o d u l e i n t e r c o n n e c t i o n f o r m u c h t h e s a m e r e a s o n t h a t
people do, to bound the context of definitions in larger systems.

• parallel processing model: Many concepts, such as natural language parsing using an
a u g m e n t e d t r a n s i t i o n n e t w o r k (A N) a r e n a t u r a l l y d e s c r i b e d a s p a r a l l e l p r o c e s s e s . I nT
fact its quite a bit of work to remove the parallelism. It should be possible to describe
p a r a l l e l p r o c e s s e s i n a p a r a l l e l f o r m w i t h t h e c h a n c e o f a m u l t i p r o c e s s i n g c o m p u t e r
being able to directly exploit the resulting parallel system.

• e x c e p t i o n h a n d l i n g m o d e l : A l l o f t h e r e fi n e m e n t s a r e b a s e d u p o n t h e p r i n c i p l e s o f
abstract data types and each different implementation of the objects and operations have
d i f f e r e n t e x c e p t i o n s w h i c h c a n o c c u r . U n l e s s t h e r e i s e x c e p t i o n h a n d l i n g i n t h e b a s e
language, the Draco approach will produce systems which spend time explicitly looking
fo r e x c e p t i o n s w h i c h m a y h a v e o ccurred. Exceptions should happen occasionally and
i n d i c a t e a i n t e r r u p t i o n i n t h e m a i n c o n t r o l fl o w p r o c e s s i n g . T h e m a i n c o n t r o l fl o w
processing should not be checking for them explicitly all the time.

• s t a n d a r d c o n t r o l fl o w a n d d a t a s t r u c t u r e d e fi n i t i o n s : T h e s e a r e o f i n t e r e s t i f t h e
resulting system is to ever be understood by a regular programmer.

• compatible compiler implementation available: Once something has been refined it
should be able to be executed on a collection of machines.

T h e b a s e l a n g u a g e r e p r e s e n t s a h i g h - l e v e l m o d e l o f t h e c o m p u t e r o n w h i c h w e e x p e c t t h e
r e s u l t i n g s y s t e m t o r u n . T h e a b o v e d e s c r i p t i o n i s f o r a v o n N e u m a n n c o m p u t e r . I w o u l d n o t
expect the base language for a massively parallel computer to be the same.

F r all of these considerations, we have chosen Ada[USDODAda83] as our base language foro
future work. In addition, we hope to do future mechanism work in Ada. The choice of a base
l a n g u a g e i s n o t i m p o r t a n t a s l o n g a s o n e i s c h o s e n a n d i t m e e t s t h e a b o v e c r i t e r i a . T h e
construction of large, reliable, application systems in the base language is the problem; not the
development of another general-purpose, high-level language.

6 The Draco Mechanism

The Draco mechanism is the part which interacts with all of the human roles. It must provide
support to application domain analysts, modeling domain analysts, and domain designers in their
efforts to add to the knowledge bas e . I t m u s t p r o v i d e s u p p o r t t o s y s t e m s a n a l y s t s a n d system
designers in their respective functions of specifying and refining a particular system. It maintains
the wide-spectrum model of the developing system.

– 14 –

6.1 The Basic Refinement Cycle

Once a system description has been cast in the notation of an application domain by a system
a n a l y s t , t h e n t h e s y s t e m d e s i g n e r u s e s t h e b a s i c c y c l e o f s e l e c t i n g a s e t o f i n s t a n c e s o f a n
application or modeling domain in the developing refinement and restricting the refinement focus
to only the instances selected. Within these selected instances the system designer would use the
d o m a i n ’ s o p t i m i z e r s , g e n e r a t o r s a n d a n a l y z e r s b e f o r e d e c i d i n g w h e t h e r t o u s e t h e d o m a i n ’ s
components to refine or not.

T h i s b a s i c r e fi n e m e n t c y c l e p r o d u c e s t h e f o l l o w i n g v i e w o f d o m a i n s d u r i n g t h e r e fi n e m e n t
process. The system is originally described in a single application domain language, but the first
refinement will introduce the notations of a modeling domain. Eventually, the developing system
is described in the notations of many modeling domains at once. Figure 2 graphically illustrates
t h e r e fi n e m e n t p r o c e s s f r o m a s t a t e m e n t i n o n l y t h e a p p l i c a t i o n d o m a i n (N L R D B) , t h r o u g h
many modeling domains (A N and RDB), and into the final executable domain (ADA).T

Figure 2. Domains in the Refinement Process
T h e s y s t e m s d e s i g n e r w o r k s w i t h t h e r e fi n e m e n t m e c h a n i s m i n o n e d o m a i n a t a t i m e . I n a
d e v e l o p i n g s y s t e m t h e r e p r o b a b l y w i l l b e m u l t i p l e i n s t a n c e s o f a d o m a i n . T h e r e fi n e m e n t
mechanism may be directed to work with all instances during refinement or focus on a single

 one.

 T h e c o n c e p t o f d o m a i n h e r e i s v e r y u s e f u l i n s u p p l y i n g a p s y c h o l o g i c a l s e t t o t h e s y s t e m s
designer (i.e., the designer must only consider and think about the objects and operations of one
domain at a time.) The ability to provide a psychological set to the systems designer is lost if the
underlying repres e n t a t i o n o f t h e d e v e l o p i n g s y s t e m i s a wide-spectrum language. This applies
even in a full automatic programming system where the system designer is an automated agent.
T h e s e l e c t i o n o f d o m a i n s b y t h e s y s t e m d e s i g n e r f o r r e fi n e m e n t p r o v i d e s a m e t h o d o f
progressively deepening[Simon69] the system description during the refinement process.

6.2 Managing the Refinement Process

A s w i t h t h e r e fi n e m e n t o f s y s t e m s b y c o n v e n t i o n a l m e a n s , t h e r e fi n e m e n t p r o c e s s d o e s n o t
proceed strictly top-down from one modeling domain to another or from modeling domains at
o n e l e v e l o f a b s t r a c t i o n t o m o d e l i n g d o m a i n s a t a l o w e r l e v e l o f a b s t r a c t i o n . S o m e t i m e s i t i s
n e c e s s a r y t o b a c k u p t h e r e fi n e m e n t p r o c e s s t o r e m o v e a n o v e r l y r e s t r i c t i v e d e c i s i o n . A s t h e
process proceeds, a refinement history is recorded which can supply a top-down derivation for
each statement in the resulting executable system. The refinement history tends to be much larger

11than the resulting program code . There are two uses for this refinement history: to understand

11. Our best estimate is that the refinement history is about 10 times the size of the resulting source code.

– 15 –

the resulting system at different levels of abstraction and to guide the refinement replay of the
problem if the original specification is changed and a new implementation is needed[Wile83].

In general we have found the making of design decisions to proceed as shown in figure 3.

Figure 3. Decisions P nding vs Abstraction Levele
The number of decisions to be made rises initially as implementation decisions must be made in
t h e m o d e l i n g d o m a i n s a n d d e c r e a s e s fi n a l l y a s t h e a l r e a d y m a d e d e c i s i o n s c o n s t r a i n t h e
remaining decisions to a few choices. The intermediate modeling swell represented by this graph
is the largest barrier to refinement.

6.2.1 Refinement Strategies and T cticsa

 R e fi n e m e n t s t r a t e g i e s d e a l w i t h t h e c o m p l e t e p r o b l e m o f h o w t o g e t a n a p p l i c a t i o n d o m a i n
statement refined into an executable system. Refinement tactics deal with the problem of how to
refine a set of domain instances under a given set of modeling decisions. Strategies are usually
inter-domain while tactics are more intra-domain.

Refinement strategies must reduce the intermediate modeling swell. One approach is to choose
some modeling domain near the application level of abstraction and drive its refinement to near
the execution domain level of refinement. During this process many modeling decisions will be
made and these modeling decisions will constrain the choices in other modeling domains.

O n c e s o m e o f t h e i n t e r f a c e s b e t w e e n m o d e l i n g d o m a i n s h a v e b e e n e s t a b l i s h e d b y t h e e a r l y
refinement of one part of the system, then the goal-oriented refinement tactics appropriate to each
modeling domain can be invoked on the goal of meeting existing modeling decisions[Fickas85,
Rich81].

Successful specific strategies must be derived with respect to a specific set of domains. W doe
 n o t b e l i e v e t h a t t h e s t r a t e g i e s c a n b e s p e c i fi e d b y a n y o f t h e d o m a i n a n a l y s t s o r d o m a i n

designers. The strategies are wide-spectrum in that they encapsulate a view of the entire set of
available domains. This means that as the set domains change, the strategies must change. To

 have a chance at automa t i c a l l y d e r i v i n g s t r a t e g i e s , w e m u s t l i m i t t h e e x p r e s s i v e p o w e r o f t he
domain tactics and domain refinements (components) which are the basic operations of strategies
so that their functions can be analyzed.

– 16 –

6.3 The Structure of the Developing System

A s t h e s y s t e m d e s c r i p t i o n u n d e r g o e s r e fi n e m e n t i t s a r c h i t e c t u r a l d e s i g n i s b u i l t u p . T h e
a r c h i t e c t u r a l d e s i g n h a s n o t h i n g t o d o w i t h w h a t t h e fi n a l s y s t e m d o e s . I n b u i l d i n g a s p e c i fi c
s y s t e m t h e r e a r e m a n y w a y s t o p a r t i t i o n t h e c o n t r o l fl o w i n t o f u n c t i o n s a n d p r o c e d u r e s .
Similarly, there are many ways to partition the data into composite data objects.

While these partitionings do not influence the semantics of the resulting system, they severely
i n fl u e n c e t h e p e r f o r m a n c e , s i z e a n d i n t e l l i g i b i l i t y o f t h e r e s u l t i n g s y s t e m . A n y a i d i n t h e
refinement of systems, such as Draco, must be able to deal with the issue of architectural design.
F i g u r e 4 s h o w s t h e f u n c t i o n a n d p r o c e d u r e c o n t r o l fl o w g r a p h s (s t r u c t u r e c h a r t s) o f p o s s i b l e
refinements of a single small problem[Neighbors80] refined by Draco.

Figure 4. Different Architectural Designs Resulting from the Same Problem“

All of these implementations of the same problem were shown to have different space and speed
c h a r a c t e r i s t i c s . T h e b a s i c u n i t s o f a r c h i t e c t u r a l d e s i g n a r e f u n c t i o n s , p r o c e d u r e s , i n l i n e
instantiations, and partially evaluated functions and procedures. P rtial evaluations are functionsa
and procedures where one or more of the usual parameters have been fixed in value. In larger
systems, modules which are collections of functions, procedures, private data types and private
d a t a s t o r e s w i t h s p e c i fi c c o n t r o l fl o w e n t r y p o i n t s b e c o m e t h e m a j o r e l e m e n t o f a r c h i t e c t u r a l
d e s i g n . I n o r d e r t o b u i l d l a r g e s y s t e m s t h e r e fi n e m e n t m e c h a n i s m m u s t b e a b l e t o c o n s t r u c t
architectural designs using all of these units.

6.4 The Notation of the Refinement Mechanism

T m a n a g e t h e i m p l e m e n t a t i o n a n d d e s i g n d e c i s i o n s m a d e i n a d e v e l o p i n g s y s t e m t h eo
mechanism needs a notation. This notation must capture two kinds of information specific to the
particular system being refined: implementation decisions of the different domain parts (detailed
design and coding information) and the control and data flow structure of the developing system
(a r c h i t e c t u r a l d e s i g n i n f o r m a t i o n) . I n a d d i t i o n , t h e m e c h a n i s m a l s o n e e d s a n o t a t i o n f o r
describing and reasoning with the elements of the knowledge base represented by the complete
set of described domains (domain analysis and design information).

A u s e f u l mode l f o r t h e s e n o t a t i o n s h a s b e e n m o d u l e i n t e r c o n n e c t i o n l a n g u a g e s (M I L s) . T h e s e
were originally proposed for programming-in-the-large[DeRemer76] as a language for capturing
t h e a r c h i t e c t u r a l d e s i g n o f a s y s t e m b u i l t o u t o f f u n c t i o n s a n d p r o c e d u r e s w r i t t e n i n a

 programming language. The idea has been extended many ways to include objects described at
different levels of abstraction[PrietoDiaz86, Goguen86].

– 17 –

As a refinement proceeds, the refinement mechanism must use a kind of MIL to keep track of the
architectural structure of the developing system and what domain objects and operations must be
kept compatible. Further, the MIL must be able to deal with notational fragments of each of the
d o m a i n s . T h u s , i m p l e m e n t a t i o n c o n s i s t e n c y c h e c k i n g i s a n i n c r e m e n t a l p r o c e s s d u r i n g
refinement.

E v e n w i t h s u c h a n o t a t i o n c o r r e c t l y m a n a g e d i t i s p o s s i b l e t o d e a d l o c k t h e r e fi n e m e n t . T h e
refinement process is deadlocked when a component which cannot be optimized or generated out
of a developing system must be refined and there is no refinement for that component which does
not violate the consistency checking of the refinement mechanism. The effects of a refinement
deadlock can be far-reaching to the point of requiring the complete refinement process to start
over again.

6.5 SubSystems as Major P rtsa

 O n e o f t h e p r o b l e m s w i t h t h e o r i g i n a l i m p l e m e n t a t i o n o f D r a c o [N e i g h b o r s 8 4 a] w a s t h a t t h e
method required each systems designer to refine every statement in a developing system all the
way down to the executable domain each time. Even though the system could aid the refinement
through the use of tactics so that many tedious decisions did not need to be made, the process
was still tedious even for the small (2k-4k line) programs produced. Sundfor was first to notice
that large systems would really not be built this way[Sundfor83b] and our recent experience with
understanding the structure of large systems enforces this belief.

T h e r e fi n e m e n t m e c h a n i s m m u s t b e a b l e t o u s e p r e - r e fi n e d , l a r g e s u b s y s t e m s a s p a r t o f i t s
r e a s o n i n g p r o c e s s . T h e s e s u b s y s t e m s a r e n o t h i n g m o r e t h a n g e n e r a l i m p l e m e n t a t i o n s o f
c o m m o n l y u s e d m o d e l i n g d o m a i n s s u c h a s d a t a b a s e o p e r a t i o n s a n d m e n u o p e r a t i o n s . T h e
difference between using subsystems and external pieces of program code is that the subsystems
were refined by the Draco mechanism and the modeling decisions made during the refinement
are related to the domains known to the mechanism and these modeling decisions are retained.
Thus, it is the availability of the refinement history of a subsystem which enables the mechanism
to reuse it in the development of other systems.

N o t i c e t h a t t h e u s e o f a s u b s y s t e m m e s h e s q u i t e w e l l w i t h t h e b a s i c a p p r o a c h o f r e fi n e m e n t
s t r a t e g i e s . I f a c o l l e c t i o n o f c o m p a t i b l e s u b s y s t e m s m a y b e u s e d e a r l y i n t h e r e fi n e m e n t o f a
particular system, then they may make implementation and modeling decisions which constrain
the intermediate modeling swell to a large degree. Refining a large system using subsystems may
be easier than refining a small one without subsystems.

Finally, notice that all systems refined by Draco are candidate subsystems because they all have
refinement histories. Some, application-specific systems, however, are less likely candidates for
reuse than others.

7 Experience With The Draco Approach

7.1 Reuse of code

The large amount of information in a refinement history is lost to someone attempting to reuse an
e x i s t i n g p i e c e o f s o u r ce code. T combine t w o e x i s t i n g p i e c e s o f e x e c u t a b l e s o u r c e c o d e t h i so
information must be recreated to ensure that any exchanged representations are consistent. F ro
this reason we expect the reuse of existing executable source code will have a limited long-term

– 18 –

benefit where whole systems are built from reusable parts. In the short-term, highly controlled
source code libraries will provide a quick productivity gain.

In our opinion, significant reuse only occurs when the analysis and designs of systems are built
f r o m r e u s a b l e p a r t s . S i n c e a n a l y s i s a n d d e s i g n i n f o r m a t i o n i s d o m a i n - s p e c i fi c , o n l y s y s t e m
refinement aids which directly address the problem of domain-specific knowledge will have any
significant reuse capability.

7.2 Efficiency of Systems Built from Reusable P rtsa

 Systems constructed from reusable parts by the Draco method are not inefficient. The method is
c a p a b l e o f r e fi n i n g s y s t e m s w i t h d i f f e r e n t i m p l e m e n t a t i o n s a n d d i f f e r e n t a r c h i t e c t u r a l d e s i g n s
(i.e., modular structures) . E a c h o f t h e s e h a v e different time-space execution characteristics. In
addition, the domain-specific optimizations provide a degree of optimization far above the well
known optimizations of a general-purpose language compiler. In the state machine description of
a communications protocol a domain-specific optimization may be able to remove or combine
s t a t e s . T h e r e i s n o a n a l o g o u s o p t i m i z a t i o n i n g e n e r a l - p u r p o s e c o m p i l e r s (i . e . , a n e x e c u t i o n
domain) because the information which enabled us to perform the optimization is no longer in
the source code. Users attempting to reuse source code without a refinement history will find that
their optimization options are limited.

7.3 The Problem of Domain Analysis

Domain analysis is knowledge engineering applied to computer science (modeling domains) and
c o m p u t e r a p p l i c a t i o n s (a p p l i c a t i o n d o m a i n s) . T h e d i f f e r e n t t y p e s o f o r g a n i z a t i o n s w h i c h d e a l
with this knowledge on a daily basis have quite different views of domain analysis.

• Academic organizations rightfully view domain analysis as an engineering process. It
is not a discovery process where completely new theories are tried out. Instead, it is the
process of reviewing previous work and attempting to determine which techniques were
successful and which were no t . A c a d e m i c o r g a n i z a t i o n s i n c o m p u t e r s c i e n c e s e e m to

12prefer to work on new theories. However, some of the most successful academic work
is a fusion and formalization of successful techniques.

• P r o d u c t i o n o r g a n i z a t i o n s a r e f o r e v e r c a u g h t i n a c y c l e o f b e i n g f o c u s s e d o n t h e
current system under development. A domain analysis must be motivated on the basis of
its cost being amortized over the costs of many systems. Further, if the domain analysis
is performed by an actual domain expert (as it must be if there is to be any chance of
success), then the organization risks failure in the development of the current system by
removing the expert from the stream of production during the domain analysis.

• Research organizations are caught in the middle between a flood of new theories from
computer science which are untried in practice and the highly filtered information from
t h e s t r e a m s o f s o f t w a r e p r o d u c t i o n . T u n d e r s t a n d w h a t r e a l l y w o r k s i n p r a c t i c e t h eo
r e s e a r c h e r s m u s t b u i l d a c t u a l s y s t e m s . H o w e v e r , i f t h e r e s e a r c h e r s b u i l d a n a c t u a l
system, there i s a c h a n c e t h a t t h e o r g a n i z a t i o n w i l l b e c o m e a production and support
organization.

A production quality refinement aid would give each of these types of organizations an incentive
and framework for domain analysis. In the mean time, the informal process of domain analysis
from each type of organization continues in the literature.

12. The work by Mallgren on graphics languages[Mallgren83] was a 1982 ACM Distinguished Dissertation.

– 19 –

7.4 Future

A f t e r t h e r e c e n t p e r i o d o f e x p e r i m e n t a t i o n w i t h t h e c u r r e n t D r a c o m e c h a n i s m , w e a n t i c i p a t e
another period of new mechanism development. This paper represents the analysis of the new
mechanism.

F r experimentation and explanation purposes, it would be helpful if the mechanism was capableo
o f c o m p l e t e l y r e fi n i n g i t s e l f . I n t h e c u r r e n t i m p l e m e n t a t i o n [N e i g h b o r s 8 4 a] o n l y s o m e o f t h e
m e c h a n i s m (e . g . , p a r s e r s , p r e t t y p r i n t e r s , t a c t i c s i n t e r p r e t e r , r e fi n e m e n t l i b r a r y b u i l d e r) w e r e
constructed using the technique. F r Draco to refine the Draco mechanism we must describe ano
application domain for the class of systems similar to Draco. It is our hope that with the new
mechanism such a domain description will be possible.

– 20 –

References

[Arango86] G . A r a n g o , I . B a x t e r , P . F r e e m a n , a n d C . P i d g e o n , “ T M M : S o f t w a r e
Maintenance by Transformation,” IEEE Software, pp. 27-39, May 1986.

[Balzer81] R . B a l z e r , “ T r a n s f o r m a t i o n a l I m p l e m e n t a t i o n : A n E x a m p l e ” I E E E
Transactions on Software Engineering, vol. 7, pp. 3-14, January 1981.

[Barstow85] D . B a r s t o w , “ D o m a i n - s p e c i fi c A u t o m a t i c P r o g r a m m i n g , ” , I E E E
T r a n s a c t i o n s o n S o f t w a r e E n g i n e e r i n g , v o l . 1 1 , p p . 1 3 2 1 - 1 3 3 6 ,
November 1985.

[Boehm81] B. Boehm, Software Engineering Economics, Prentice-Hall 1981.

[Caine75] S . C a i n e a n d E . K . G o r d o n , “ P D L - A T o l f o r S o f t w a r e D e s i g n , ” i no
P r o c e e d i n g s , N a t i o n a l C o m p u t e r C o n f e r e n c e , v o l . 4 4 , p p . 2 7 1 - 2 7 6 ,
AFIPS Press 1975.

[CCITT84] C C I T T , “ F r m a l D e s c r i p t i o n T c h n i q u e s f o r D a t a C o m m u n i c a t i o n s ,o e
Protocols, and Services,” CCITT Recommendation X.250, 1984.

[Cheatham84] T . E . C h e a t h a m “ R e u s a b i l i t y T h r o u g h P r o g r a m T r a n s f o r m a t i o n , ” I E E E
Transactions on Software Engineering, vol. 10, pp. 589-594, September
1984.

[DeRemer76] F . D e R e m e r a n d H . K r o n , “ P r o g r a m m i n g - i n - t h e - L a r g e V r s u se
P r o g r a m m i n g - i n - t h e - S m a l l , ” I E E E T r a n s a c t i o n s o n S o f t w a r e
Engineering, vol. 2, pp. 80-86, June 1976.

[F hlman79] S . F h l m a n , N E T L : A S y s t e m f o r R e p r e s e n t i n g a n d U s i n g R e a l - W r l da a o
Knowledge, MIT Press 1979.

[Fickas85] S. Fickas “Automating the Transformational Development of Software,”
I E E E T r a n s a c t i o n s o n S o f t w a r e E n g i n e e r i n g S E - 1 1 , (1 1) , p p .
1268-1277, November 1985.

[Freeman83] P. Freeman, “Reusable Software Engineering: Concepts and Research
D i r e c t i o n s ” i n P r o c e e d i n g s o f t h e I T T W r k s h o p o n R e u s a b i l i t y i no
Programming, ITT, pp. 2-16, September 1983.

[Freeman87] P . F r e e m a n , “ A C o n c e p t u a l A n a l y s i s o f t h e D r a c o A p p r o a c h t o
C o n s t r u c t i n g S o f t w a r e S y s t e m s , ” I E E E T r a n s a c t i o n s o n S o f t w a r e
Engineerng, in press 1987.

[Gane79] C . G a n e a n d T . S a r s o n , S t r u c t u r e d S y s t e m s A n a l y s i s : t o o l s a n d
techniques, Prentice-Hall, 1979.

[Green76] C. Green, “The Design of the PSI Program Synthesis System,” in 2nd
I n t e r n a t i o n a l C o n f e r e n c e o n S o f t w a r e E n g i n e e r i n g , p p . 4 - 1 8 , O c t o b e r
1976.

[Goguen86] J. Goguen, “Reusing and Interconnecting Software Components,” IEEE
Computer, pp. 16-28, February 1986.

– 21 –

[Gonzalez81] L . G o n z a l e z , A D o m a i n L a n g u a g e f o r P r o c e s s i n g S t a n d a r d i z e d T s t se
(MS Thesis), University of California, Irvine, ICS Dept., 1981.

[Jackson76] M . A . J a c k s o n , “ C o n s t r u c t i v e M e t h o d s o f P r o g r a m D e s i g n , ” i n
P r o c e e d i n g s , 1 s t C o n f e r e n c e o f t h e E u r o p e a n C o o p e r a t i o n i n
Informatics, vol 44. Springer-V rlag 1976.e

[Knuth68] D . K n u t h , T h e A r t of Computer Programming, volumes 1-3, Addison-
W sley, 1968-1973.e

[Kibler77] D. Kible r , J . M . N e i g h b o rs, and T.A. Standish, “Program Manipulation
via an Efficient Production System”, SIGPLAN Notices, vol. 12, no. 8,
pp. 163-173, 1977.

[Lentz80] B . L i e n t z a n d E . S w a n s o n , S o f t w a r e M a i n t e n a n c e M a n a g e m e n t ,
Addison-W sley 1980.e

[Mallgren83] W . M a l l g r e n , F o r m a l S p e c i fi c a t i o n s o f I n t e r a c t i v e G r a p h i c s
Programming Lnaguages, MIT Press 1983.

[Morrissey79] J . M o r r i s s e y a n d L . W u , “ S o f t w a r e E n g i n e e r i n g … A n E c o n o m i c
P rspective,” in 4th International Conference on Software Engineering,e
pp. 412-422, September 1979.

[Neighbors80] J.M. Neighbors, Software Construction Using Components, Ph.D. Thesis
a n d T c h . R e p . T R - 1 6 0 , U n i v e r s i t y o f C a l i f o r n i a , I r v i n e , I C S D e p t . ,e
1980.

[Neighbors84a] J.M. Neighbors, J. Leite, and G. Arango, Draco 1.3 Manual, T ch. Rep.e
RTP003.3, University of California, Irvine, ICS Dept., June 1984.

[Neighbors84b] J . M . N e i g h b o r s , “The D r a c o A p p r o a c h t o C o n s t r u c t i n g S o f t w a r e f r o m
R e u s a b l e C o m p o n e n t s , ” I E E E T r a n s a c t i o n s o n S o f t w a r e E n g i n e e r i n g ,
vol. 10, no. 5, pp. 564-574, September 1984.

[Press86] W . P r e s s , B . F l a n n e r y , S . T u k o l s k y , a n d W . V t t e r l i n g , N u m e r i c a le e
Recipes: The Art of Scientific Computing, Cambridge University Press,
1986.

[PrietoDiaz86] R . P r i e t o - D i a z a n d J . M . N e i g h b o r s , “ M o d u l e I n t e r c o n n e c t i o n
Languages,” The Journal of Systems and Software, vol. 6, pp. 307-334,
November 1986.

[PrietoDiaz87] R. Prieto-Diaz and P. Freeman, “Classifying Software for Reusability,”
IEEE Software, pp. 6-16, January 1987.

[Rich81] C . R i c h , “ A F r m a l R e p r e s e n t a t i o n f o r P l a n s i n t h e P r o g r a m m e r ’ so
A p p r e n t i c e , ” i n 7 t h I n t e r n a t i o n a l J o i n t C o n f e r e n c e o n A r t i fi c i a l
Intelligence, pp. 1044-1052, August 1981.

[Ross77] D . R o s s , “ S t r u c t u r e d A n a l y s i s (S A) : A L a n g u a g e f o r C o m m u n i c a t i n g
Ideas,” IEEE Tr a n s a c t i o n s o n S o f t w a r e E n g i n e ering, vol 3, pp. 16-34,
January 1977.

– 22 –

[Rowe78] L . R o w e a n d F . T n g e , “ A u t o m a t i n g t h e S e l e c t i o n o f I m p l e m e n t a t i o no
S t r u c t u r e s , ” I E E E T r a n s a c t i o n s o n S o f t w a r e E n g i n e e r i n g , v o l . 4 , p p .
494-506, November 1978.

[Royce70] W. Royce, “Managing the Development of Large Software Systems”, in
P r o c e e d i n g s , I E E E W E S C O N , A u g u s t 1 9 7 0 . r e p r i n t e d i n 9 t h
International Con f e r e n c e o n S o f t w a r e E ngineering, pp. 328-338, April
1987.

 [Sedgewick84] R. Sedgewick, Algorithms, Addison-W sley, August 1984.e

[Simon69] H. Simon, The Sciences of the Artificial, MIT Press 1969.

[Smith85] D . S m i t h , G K o t i k , a n d S . W s t f o l d , “ R e s e a r c h o n K n o w l e d g e - B a s e de
S o f t w a r e E n v i r o n m e n t s a t K e s t r e l I n s t i t u t e , ” I E E E T r a n s a c t i o n s o n
Software Engineering, vol. 11, pp. 1278-1295, November 1985.

[Standish76] T.A. Standish, D. Harriman, D. Kibler, and J.M. Neighbors, The Irvine
P r o g r a m T r a n s f o r m a t i o n C a t a l o g u e , T c h . R e p . , U n i v e r s i t y o fe
California, Irvine, ICS Dept., 1976.

[Sundfor83a] S. Sundfor, Draco Doma i n A n a l y s i s f o r a R e a l T ime Application: The
A n a l y s i s , T c h . R e p . R T P 0 1 5 , U n i v e r s i t y o f C a l i f o r n i a , I r v i n e , I C Se
Dept., 1983.

[Sundfor83b] S . S u n d f o r , D r a c o D o m a i n A n a l y s i s f o r a R e a l T i m e A p p l i c a t i o n :
Discussion of the Results, T ch. Rep. RTP 016, University of California,e
Irvine, ICS Dept., 1983.

[USDODAda83] U n i t e d S t a t e s D e p a r t m e n t o f D e f e n s e , R e f e r e n c e M a n u a l f o r t h e A d a
P r o g r a m m i n g L a n g u a g e , A N S I / M I L S T D 1 8 1 5 A - 1 9 8 3 , U . S .
Government Printing Office. Ada is a registered trademark of the U.S.
Government (Ada Joint Program Office). February 1983.

[W ters85] R . C . W t e r s , “ T h e P r o g r a m m e r ’ s A p p r e n t i c e : A S e s s i o n w i t ha a
K B E m a c s , ” I E E E T r a n s a c t i o n s o n S o f t w a r e E n g i n e e r i n g , v o l . 1 1 , p p .
1296-1320, November 1985.

[Wile83] D . S . W i l e , “ P r o g r a m D e v e l o p m e n t s : F o r m a l E x p l a n a t i o n s o f
I m p l e m e n t a t i o n s , ” Communications of the ACM, vo l . 2 6 , p p . 9 0 2 - 9 1 1 ,
Nov. 1983.

[Wile86] D . S . W i l e , “ L o c a l F r m a l i s m s : W i d e n i n g t h e S p e c t r u m o f W i d e -o
s p e c t r u m L a n g u a g e s , ” i n C o n f e r e n c e o n P r o g r a m S p e c i fi c a t i o n a n d
Transformation, IFIP W rking Group 2.1, April 1986.o

[Y urdon79] E. Y urdon and L. Constantine, Structured Design, Prentice-Hall, 1979.o o

– 23 –

