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By manipulating programs to reorganize the way they compute their vesulrs, it
is possible to improve progran performance in certain desirable directions,
Further, using certain laws of exchange, it is possible to transform concise,
abstract, high-level programs inte efficient, concrete, underlying representa-
tions. This paper explores the notion of using source-to-source transformations

interactively as a basis for an approach to program improvement and rafinement,

Examples of program manipulation are presented that convey both the flaver of

the approach and Its requirements,

I, Imtrodusiion

This paper explores concepts in pregram manipu-
latlon. Programs are viewed as objects containing
subexpressions that can be rearranged using laws
of exchange that preserve program equivalence,
These exchange laws are called source-to-souree
tranaformations.

The examples we shall study are aimed at two
PUrposes: program improverent and program refine-
ment, COften it becomes necessary to improve a
glven program s¢ that it meets certain required
operational constraints, These operational con-
stralnts may derive from the requirement to execute
the program in restricted space, or from response—
time requirements. In addition, economic factors
associated with extensive repetitive executions of
the program way make various efficiencies highly
desirable, Thus, when efficiency counts, pProgram—
mers must be able to select appropriate underlying
representations, and to gulde the production of ef~
ficlent mechanical details. The achlevement of such
efficiencles may occur at the expense of legibility
and clariity, and may require close control over low-
level implementation descriptions,

By contrast, during initial stages of program
desfgn, or during later stages of documentation
and mailntenance, it 1s advantageous for Programmers’
to deal with programs written in a high-level lan-
guage free frem contamination with low-level imple-~
mentation details, and written in a concise, clear,
well-structured style,

A given high-level program may possess many
underlying concrete implementations, each with
different parformance properties, Different data
representations may support the same abstract pro-
gram intent and may be accompanied by different
appropriate underlying program text fo express re-
quired operations. Progrom Refinement is the pro-
cees of transforming a high-level program into a
concrete underlying implementatlon by "filling in
details” with reference to some specified repre-
sentation conventions,

{
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High-level to low-level transformatfons corres—
pond to the concept of stepwise refinement that has
received much sttention in the structured program—
ming literature [1,2], while transformations that
iwprove programs have been the conventional focus
of much of the literature on progran optimization
[3,4,5], Both sorts of transformations are basie
to the programming process, and, thus, it 1s inter—
esting to ingquire whether both can be mechanized at
a level morc comprehensive than that seen in current
Practice,

The study of mechanical program transformation
is part of a larger research effort zimed at extend-
ing the range of coverage of mechanical programming
assistance from contemporary tools such as text-
editors, compilers, debuggers, and syntax-checkers,
te encompass new capabllities such as program veri~
ficatien [6,7,8,%], program synthesis [10,11,12],
and mechanical prograrmer's apprentices [7,15].

. Following Knuth [18], our particular approach
15 aimed at the development of an itnteractive
program mantpulation system,

The programmer using such a system will
write his beautifully structured but possibly
inefficlent program P; then he will inter-
actively specify transformations to make it
efficient. Such a system will be much more
powerful and reliable than a complately
automatic one (16, p. 283].

We see several potential advantages in this
approach, TFirst, a mechanical transformation that
has been shown to preserve program equivalemce [25],
cartles out reliably what otherwise would be subject
to human error, znd saves the programmer frem having
to think through the details each time,

Second, mechanical transformations may make it “/
possible to experiement with z change in the under~
lying representations of programs where macually
it might otherwise be prohibitively expensive or
unreliable, Oftentimes, the extensive volume of
low-level detail in contemporary large-scele pro--
grams makes consideratiom of an extensive represen~
tation change unthinkable, However, 1f low-level
concrete details have been generated mechanically
from a high-level original by mechanical refinement,
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then shifting representations hecomes a great deal
more economical, and a new dimension of freedom is
opened up for the programmer,

Third, coupled with some sort of perfermance
evaluation mechanlsm [17), we can isolate and then
transform interactively those sectlons of the pro-
gram whose efficiency 1s must critical to overall
performance, Experience shows [1B] that oftentimes
a preponderant portion of the execution time is
spent in a relatively small portion of a program.
Effort spent at program improvement yields the
highest payoff when directed at such places,
an Interactive program manipulation system, a
programmer could fecus. the optimization process
with a degree of control not now attainable in
contemporary optimizing compilers,

In

Fourth and finally, a mechanical assistant
that helps manipulate and improve programs is the
embodiment of an extensive stock of ideas for pro-
gram transformation and refinement that may well
exceed the capabiliries an average programmer
might otherwise bring to the tssk. Such a system
then tends to act as a "force multiplier" #n the
production of effictent, reliable programs.

This paper focuses on examples that 1llustrate
program manipulations we seek eventually to mech-
anize, and that convey, more or less, the flavor
of the overall approach and its requirements.

2. A Notation for Transformations

In wany areas of mathematics, transformations
are given as rules of exchange of the form P = @,
For example, in aigebra, we might find the distrih-
utive law given in a form such as X(Y+Z) = XY + XZ;
in logic, we might find a simplification law given
as BA(BYC) = B; and In a table of integrals, we
might find a rule such as fu dv = w - jv du.
Each of these exchange laws can be used to replace
a given expression with an equivalent one,

Simtlarly, we can specify exchange rules for
expressione used in programs. For instance, we
might give a distributive rule involving condi-
tional expressions such as:

x + {if b then y elae 2z} = (if b then x+y elae x+z)

To specify that a given exchange rule is intend-
ed for use in 2 preferred direction, we write P =»10,
For example, writing BA(BVC) => B signifies our pre-
ference for replacing the more complex expression
BA(BvC) with the simpler expression B, where possible.

Since computer programs often contain the equal
aign (=), the use of the double shafted arrow {=>}
helps avold ambiguities in the specification of
transformations on expressions, For example, writing

h=c=d =>(b=2¢c)a (c=4d)
seems preferable to writing

bac=d=1(b=c} A {c=4d) .

For this reason, we Indicate bi-directional ex-
change rules using a double-headed arrow (<=>) as
1o X(¥+2Z) <=> XY+%Z.

* Some transformations can be applied only under
special conditions. For example, provided X # 0,
we can apply the cancellatfon law XY » XZ =" ¥ = 2,
Sometimes, we state such conditions formally as
part of a transformation rule, as in writing

| provided X # 0: XY=XZ «> Y=2 , _?

In this case, the condition (X#0) is called an
enabling condition,

Not all source-to-scurce trans{ormations can
be convenlently stated as exchange rules. Some-
times it is preferable to give a procedure for
transforming a program into another. This condition
usually applies when we cannot easily devise a sim-
ple syntactic "pattern" to match situaticms in which
a transformation applies.

For example, one source-to-source transformation
of Interest consists of removing useless assignment
statements, which assign values to "dead" wvariables
{those which are never suhsequently referenced in
a program). This process fs better exnressed as a
procedure with several steps than as an exchange
rule on various forms of programs,

Such procedures are program manipulating programs,
In this situarion, programs ceoustitute dual entities
that do the manipulating and are themselves manipy-
lated. This requires introducing appropriate nota-
tional conventions to distinguish between the objects
and agents of acticns, However, in this paper we
refrain from treatment of this issue on the grounds
that informality better suits our exposition.

3. General Fnabling Conditioms

The transformations we study are intended to pre-
serve progran equivalence, This implles that we can
apply certain transformstions only under certain en-
abling conditions, Three such enabling conditions
are of such general applicability, however, that they
deserve special mention. These are called commuta-
tivity, freedom from side-effects, and invariance,

Let F be a well-formed program fragment (i.e. a
phrase in the grammar of the programing language at
hand). The input variablee of F, denoted In{F), are
those that F reads and never writes, or that F reads
first before writing., The local variablés of F, de-
noted Loc(F), are those that F writes before reading,
which are also not inmput variables of any other pro-
gram fragment G, veachable from F, The output var-

. tables of F, denoted Qut(F), are noun~local variables

of ¥ which F writes,

Given two progrem fragments F and G, we wish to
Inow when it {s permissible to exchange their order
of execution while preserving program equivalence,
since certain program transformations implicicly
change the ecrder of certain constituent program

 fragments, We shall say that two such fragments are

—

commitative if their order of execution can be inter-
changed without loss of program equivalence. It can
be shown that F and G are commutative provided

Out(F) n Ouz{G) = @, and
In(F}nOur (&) u In(C)nQut{F) = & .

Intuitively, this means that F and G commute if they
write into disjoint sets of cutput variables, and if
nelther writes inteo variables which are inputs of
the other. They may, however, share the same read-
only variables, and they may use identically named
local variables.

!  Whenever we are glven a transformation that impli-
citly changes the order of execution of some of its
constituent program fragments, the fragments whose
order 1s changed must be cpmmtative. This require—
ment i3 so pervesive that it {s wasteful to mention
it every time it applies, and we ghall asssume in the
sequel that 1t always applies. For example, inm the

R . R Cm Mmoo m o m
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transformation:
'l.—_]‘- b then
a; ©f b then ¢ else d => begin aje end
elge
Legin aj;d  end

the order of execution of a and b is Implicitly

changed, so a and b must be commutarive. This
would exclude transforming
®312f xow then y elge 2

into
if x»w then
begin x + 3; y end
elae
begin x + 3; z end

for instance,

If the program fragment F does not write into any
non-local variables, then we say F is gide~effect
Free.

definition: F is side-affect Free provided
Cut(F) = o .,

For'example, the McCarthy conditional transfor-
mation:

aAb =>»

if a then b else false

requires b to be side-effect free in order to pre—
serve program equivalence, in general,

We say that a program fragment F is {mvariant
with respect to a program fragment G provided G
does not write into any variables that F reads,

definition: F is invariant with respect to G,
praovided Qut{G)nIn(F) = ¢ ,

Invariance is required as an enabling condition for
transformations which remove invariants from loops.
The following transformation requires invariance:

provided F is invariant with respect to R, and
P and @ are gide-effect frea:

while P do > While P do
if Q then R else & begin
while Q do R;
s
end s

4. Dnproving a Program

Fagter

to Bun Nearly Six Times

As our first example, we show how to use a
small set of gource-to-source transformations to
improve a program fragment which multiplies two
BxN, upper-triangular matrices A and B. The ele-
ments of the preduct matrix € are given by the
formulaz N

Cl1,33 = D, Ali,k] x 8{k,{] .
k=1

A corresponding program fragment to compute C is:

for 11+ 1 step 1 wuntil ¥ do i
for 1 « 1 step 1 until N do
begin
Cl1,5] « 03
for k « 1 atep 1 until N do
! Cl1,3] + C[1,5] + A[1,k]xB[k,3]
! | end

('

Given that A and B are upper-triangular matrices,
we can write: o

— hee el i - [

. the assignment C{i,j] « ¢[1,3] + a[4,k]xB{k,3] in

AlL, k)] = (if i s %
<

then A[1,k] else 0 )
Bli, 11 = (&7 « < 3 ¢

nen Blk,j] elae 0 ) (2)

We now wish to simplify the zbove program fragment
with respect to the latter conditional expressions
to_se if we can eliminate products involving matrix
elements which are zero, We shall use the following
laws of program transformation:

v

1. distribution on conditionals
{a)

X <operator> (if Y then Z else W) =>
(If Y then X<operators? elsa K<operator;w)
(b) (if Y then Z elge W) <operator> X =
(if Y then Z<operator>X else Weoperator>X)
2. arithmetic identity elimination M
(8) X x0 =>0 0% X =>0
(b) X4+0 =X O+ % =»%
3. eliminating assignments by identity -
(a) X+ X = empty (M

4. eliminating the empty program
r(a) provided § is a <statement>:
! 5; erply => 5 § empity; $=> §
(b) for k + 2 step b until ¢ do empty => empty
5. splitting the range of a loop
{a) provided 4 s b:
for k = a step 1 until b do
if k<] then X else Y
e> JOr k + a gtep 1 until
. for k + 3+1 step 1 un#i
(v} provided 1-1 5 b:

} do X;
lbdoy

for k + a step L until b do
if 1sk then X else Y

- fOr k + a step 1 until 1-1 do ¥;
for kx < 1 dtep 1 wnt{il b do X

In order to preserve program equivalence, X and Y
must be commutztive in transformation l.a, X must be
glde-effect free in transformaticns 2.a and J.a,

k must be local im transformation 4.b, and a, b, and
¢ must be gilde-effect free in transformation 4.b.

To¢ carry out our program improvement, we begin by
transforming the product term &[1,k])=B{k, 3] used in

the inmermost loop of our original program fragment.
We expand this product term by substituting the con—
ditional expressions given in (2} above:

Al4,k] x B{k,5] _
) U@ ;
(if 1isk then A[1,k] else 0)
x (tf ksj then Bik,]) elsz 0)

The latter expression is repegtedly transfcormed
using distribution on conditionals and arithmeric
identity elimination as follows:

J} l.a
: (if k9 then (if Isk them A[i,k] else 0) x 8[k,11
H - elae (Lf 1sk then A[1,k] else 0) x 0)
i i
| U 2.2 TenzR

@(if k€] then (if igk them A(1,k] elsa 0) x Blk,1]
t .else 0) {
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U 1. TABTMES to obtain the final form:

. i+~ 1 step 1 until ¥ do
(Ef k23 then (if i<k then A{1,k)I*Blk,j] for srep e

I wEil W
(\ elge 0xBlk,1]) else 0) _ fogegi; L step 1 until X do
U 2.2 TZAZL cfi, i3 + 0;
. . . . Jor k « i step 1 until j do {3)
then (if isk ther 3 . . :
TS STy et Cl325) = CI4,3] + ALL,k]<B[K, ]
else else end =
We can now replace the product term inp ' )
Cl1,5) « cl4,j] + Al1,%]%B[k, 3] with the latter Analysis of the running times of the program frag-
result, and apply further transformations as ments (1) and (3) reveals that the imner loop of (1)
follows: executes N3 times, while the inper loop of (3) exe-

cutes N3/6 + n2j2 4+ N/3 times. Thus, while both
fragments are of computational complexity O(N3), we
see that as N + @, there is a nearly sixfold reduc-
tion in the number of executions of the imner loop
{} l.a {applied four times) ‘TAARDD of (3) compared to that of (1), Further, for N > 135,
there 1s at least a fivefold reduction, a worthwhile

Cl1,1} + €[4,3] ¢
(if ksj then (if i<k then Al1 k]1=B{k,§]
else 0) elsa 0)

{(if k= then (if isk then {2
CI1,3] + €{4,1] + ALL,kIxB[k,5] _ mprovement. : )
elge Cli,1] « Cf1,4]1 + 0) 'Fiﬁﬁﬁ’\/ b;ﬂb Once one shows that the transformations used pre-
elee C[1,j] ~ cli,jl + o R serve program equivalence {25], then the sequence of

also constituce a proof that the Improved program is
(if k<} then (if isk then equivalent to the original, Hence, if the original
C{1,3] + C[1,3) + Al kIxB[k,5] program has been proved correct, the improved pro-
else C[1,1] = ¢[1,i]) gram must be correct also,

elee C[1,3] « ¢li,3h : © We see that the inner loop of the improved
) 3.2 (applied twice) 73%& program (3) of the form:

U 2.b (applied twice) ' Tzaﬁ manipulations used to produce an improved program
°,

(if ksi then (if isk then for k + 4 step 1 until i do
. Cl1,31 « cfi,3] + a[4,k]xBlk,3] . Cli,31 < cfi,1] + A[4,k] x B[k, 3]
. else empty) elee empty) o

is never executed if i>j, Hence, the program frag~

' The assignment C[1,3] + Cl4,1] + A[4,k] = Bk,1] ment (3) initializes C{i,1] to C when i>3, but it
in the inner loop of the original program fragment never subsequently changes the value of cidi,il.
(1} can now be replaced with the latter result, This implies that the sub~diagonal elements of the
t } giving 2 new version of the inner loop: product matrix C are 0. What we have, then, is a
, . .. o proof by program transformation that the product
for k+1 step 1 until N do : . . of two wpper—triangular matrices is upper-triangular.
tf(z;gizie:ker ' o T © At each stage of the sequence of program manipu-
y . lations above, we applied program simplification to
else ;i;;g]+c[i,j]+A[i,k]XB{k,j] else empty) keep "intermediate program swell” within bounds, This
: 1s similar to the phencmencn of "intermediate expres-—
Applicatien of the loop splitting transformarien sion swell™ that occurs in algebraic manipulation
5.2 to the latter text yields: . ) systems [19],

: U 5.2 VA g Replacing Procedure Calls with Partially
i for k « 1 etep 1 wntil i do o, ) " Bvaluated Procedure Bodies
| Lf ik ¢ j }+ + j :
! (if 1sk a?:: gééé;;_C{i’j] ﬁ[i’k]xB{ka} . :» . A technique that ig often effective in optimizing ’ﬂ?
: B iy : ©: - .8 program is to replace a procedure call with a par= bl |
! for i« 341 atep 1 wntil N do empty tially evaluated copy of the procedure body, This is
particularly worthwhile if the procedure call sits

h i

ﬁ:a:;:::: :j :r:z:f:ﬁa:iéggpﬁlgoi.rll:pi«?:.anghe _ inside a heavily travelled inner loop and the compi- s m Lh_‘f

ler is forced to generate relatively expensive par—
: b RAE—_
first may again be spli using transformation S.b L% . ameter passing code (as can happen in Algol 60, Tor

; L 4.b, 4.a, and 5.b . 4ﬁ§9‘9ﬁ3_ <. . 1nstance, when shifting lexicographic execution en-~

: cr g . el @ vironments between the site of the call and the site
! ;g: : : i ::ZP i ﬁ::ii ; éodb N <6 of the procedure body for parameters called by name),
| ci1,1) « C[g 31+ A[L,K] x B[k,1] In addition, when a comstant is used as an actual

: b L] ' E Rt »

; parameter to a procedure call, and replaces a given
formal parameter uniformly throughout the correspon-
ding procedure body, program simplification techniques
nay yleld substantial improvements, Loops may collapse,

The first of these split loops now collapses and

disappears using transformations 4.b and 4.a again:
i :

; U 4.b and 4.a . E arms of conditional expressions may drop away, rela-
[ | tional expressions may simplify, and avithmetic may -
; . . i be performed, Under such circumstances, the procedure
! fbg{i j]i+3§?§ j]u:tiiijk?bx Blk,1] t bady may be sald to be partially evaluated §20,1211],
i ' y ! ' : A limiting case vccurs when all parameters to & pro-
o We may now substitute this improved version of the ° tedure cgll are constants, enabling complete evalua-
- %nner loop back into the original program fragment tion of the procedure call, and replacement of tha

———
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call by the run-time value (assuming the call is
slde~effect free-and returas a value),

For example, suppose we are given a procedure

procedurs Pla,b,c}; integer a,b,c;
begin integer x;
K+ or:
if a>l then Q{b—x) else
while >0 do
begin
R{a-b);
c+c -1
end
end praocedure

Consider, now, the following call on P, where 81
and S5 are surrounding statements:

R

P{1,x+1,b);

533

Renaming the local variable x inside the body of P
to be y, in order te aveid naming conflicts with
the identically named variable x used as an actuzl
parameter to the call, and substituting actual par-
ameters for formal parameters yields the following
renamed, substituted version of the procedure body:

begin integer vy;:
¥+ r;
if 1>1 then Q{(x+l)-v) else
wkile b>0 do
begin
R(1~(x+13);
b+ b-1
end

O

end

Bow using simplifications such as {1»1) => false,
if false then A else B => B, and I-(x+l) =» —x, the
latter text simplifies eo:

begin integer v,
¥ -3
while b>0 do
begin R(~x); b + b-1 end
and

The final simplified piece of text can be used to
replace the original call, F(1,x+l,b)},

Generally speaking, partial evaluation of a re—
named, substituted procedure body proceeds tngide-
out. By this we mean that simplification {s firsc
applied at the deepest levels of neating, and then
proceeds outward to the levels of nesting immediate-
1y contalning results previously simplified. A
brief incomplete outline of this process is glven
in Figure 1 below. A great deal more care and pre-
elsfon 1s required to carry out "suitable systematic
renaming” than we have indicated briefly here, and
the transformations required to simplify program
forms are much more exteasive than the outlipe in
Figure 1 indicates. These matters are dealt with fn
[22], a program transformation catalegue containing
over 100 groups of transformations, and spelling out
such processes as "suitable systematic renaming' in
datail, !
) |
8. Procetural dbatrgction |
i Replacing a procedure call with a partially eval-
uated procedure body saves execution time usually at
the expense of program size. The inverse transfor—

O

———

Figure I,

Substituting Simplified Versionz of Podies of
Procedures for Calls on Those Procedurce

1, Feraming: ¥liminate neme conflicts by suitable
systematic renaming,

2, Substituiion: Substitute actual parameters from
the procedure call into the procedure text ig
places indicated by the corvesponding formal
parameters, [This is for ’call by name" param-
eter passing. Aﬂi\&é ust be followed
for “call by value” and "call by reference”, )

3. Simplification:

4. Arithmetic on Constants: do all possible
- arithmetiec tesulting from the substitution
of constants for variables,

Simplify Arithmetic

least the following

X+ 0 =>X, 1 x
Lx0=>0, X/

Stmplify Relational

(X-Y)<relation>0

Expressions: using at
transformations:

X=>% X+1=>%,
1l =>X, ete,

Lrpressiome: e.g.,
=> X«<relatien>Y

e.g.
~ true => false A A B => ({f A then B

~ falge => true else false}
A Y true => frue AV B => (if A then true
A v false => 4 else B)

A A true => A {(if ~A then B else C) a3
A A false => false {(if A then C elae B)

Stmplify Cbmtrol Forma:

Simplify Boolean Expressions:
Pt fy =P

2.8,

(if true then & glse B) => A
(if false then A else B) => B
while false do § => empty

4. Replacement: replace the original call om the
procedure with the simplified bedy resulting
from step 3. -

mation, procedural abstractiom, cam be used to gen-
erate a saving in progrem space at the expense of
exacution time. Procedural abstraction.consists of
replacing a set of similar pieces of coda P1,B5,-..,F
with calls on a procedure P, which is derived by
generalizing the P; (l<isn),

For example, in the computerion of the Cosine of
the angle between two 3-vectors v and w, one might
find the code:

5+ 0;

for 1+ 1 gtep 1 until 3 do SeStv[ilxw[i)

R« 0 i

for 4+ 1 step 1 until 3 do Reite[i]xv[1] (&)
T+ 03

for 1+ 1 agtep 1 until 3 do TeTHuw[1]xw[i]

Result + S/(RxT} :
By recognizing the common lecop, one can replace this
code by the following:

. real procedure Dot(x,y); real array x,y[l:3]

i “begin integer 1; :

i Dot + 0;

i for 1 + 1 step 1 until 3 do (5)
Dot + Dot + x[i}xy[{] [

t

. end;
- -~ Rasult + Dot(v,w)/(Dot(v,v)XDpt(w,w)) S

n




One way to construct a procedural abstraction
of a set of program fragments Py,P,,...,P, Involves
determining the Ieasi common generalization [23,24].
We say that F is legcs general than G (written F<G),
if there exists a substitution 8 such that T = 6C,
If F and G are exactly equal under some renaming of
thelr respective variables, we say they arc glpla-
betie varianis (written F~G), G 1is a least common
generaltzation of two program fragmeunts F and F3
if both F12C and FQSG, and there exists ne G'<G
such that F1<G' and F,=G', and such that G' is not
an alphabetic variant of G. The least coumon geueral-
ization is unique up to renaming of wvariables,

Roughly speaking, we can find a least common gen-
eralization of Py,Py,...,F, by superimposing their
"parse trees” on top of ons another and by idenci-
fying the largest common portlon of the set of
superimposed trees containing the root, At anv place
where the roots of two or more subtrees differ, we
can substitute a new formal parameter, which takes
on different subtrees as valves, In this fashion,
variables replace the smallest regions of superim—
posed code that differ, and the largest common
superstructure is identified.

Let F be a program fragment, and let P be a
“pattern”. Let F==P denote the relatiomship
F is of the form P", An example of an algorithm
that constructs least common generalizations is
as follows:

procedure T'(Py,P ,...,Pn); Construct the least
common generalization of the program frag-

ments Pl,Pz,...,Pn.

0
[1] If all the program fragments are identically 5
equal, Py=%9...7P,, then the procedure ter- *

minates with'their common value Py as a result,

[2] If there exists a binary operator B suech that
P; == x4 B yq for all i {i1sisn), then the
procedure terminates with the value

Flx1,%05000,%) B T(¥1,¥90-00,7,)

[3]) If there exists a unary operator & such that
Py == ayy for ail 1 (l<i<n), then the
procedure terminates with the value

a F(eryZ"“’Yn) .
[4] If Py == Ai[ei] for all 1 (1siza), then the
‘ procedure terminates with the value
r(ﬂlyﬁz...,,ﬁn)[ r(el'ezﬂ"’en) 1.

[3] If Py == if by then cy else dy for all 1 {lsisn},
then the procedure terminates with the value
if F(bl,bi,...,bn) then F(Cl,CZ'...,Cn)
T

elge T'(d),dy,...,4y)

{6] If P, == for via; step by wntil c; do S5y
for all i (lSiSn)l then tée procedure ter—
ninates with the value for [{vy,voeaa,v ) +
T(a1,825«0043n) 82ep T(b1,bg,..0,b0) witil
NG FO S I 2 F(Sl,Sz,..{,Sn).

{7] Otherwise, the result.is an n-tuple

' <P14Pp4.0 P >, In other words, 1f the Py are
not instances of some common program form, shown

* 4n steps [1] through [6], then the result is an

i n-tuple of ungeneralized program fragments.

As an example, we apply I to the three for-state-
menta used in the code fragment (4) above:

F{for 1<1 step 1 until 3 do S+Shv[i]xw[1i],
for i+l atep 1 wntdil 3 do ReRiv[ijxv[i], =»
For 1«1 gtep 1 until 3 do T+«Tuli}xw[1])

For i+ 1 gtep 1 until 3 do
<8,R,T> +« <8,R,Tr + <v,v,wr[ilx<w,v,w>[1]

The final step in the generalization process 1s to
replace distiner tupies with distinet new variables,
Letting <§,R,T> » Dot, <v,v,w»> x, and <w,v,w> > ¥y,
we gelb:

for 1 « 1 step 1 until 3 do Dot + Dot + x[1]xy[1]

The patticular cholce of variahles here is that re-
quired to generate the for-statement in the general-
ization (5) of the for-statements used in (4) above,

7. Speading Up Evaluatiorn of Boolean Expressioms
—— —n

The source-to-source transformation studied in
this secrion 1s carried out by two procedures which
call each other recursively, Let F(al,az,....an) be
a Boolean expression over the side-effect free Bool-
ean primaries aj,ag,...,a; (for nzl) wvsing onty the
operators {~,v,a}.” Llet ¥ be a transformatiocn that
removes Boolean constants that are operands of Bool-
ean cperators by repeated application of the follow-
ing transformations:

a v true =» {rus a A true => a
a v false=> a a an false => false
true v a => true true A a => a

. faleev a => a false A a => falae

~ true => false
~ fulae => true

Define & as follows:

provided nzl:
¢(F(31,82,...,an))
=> If a1 then ¢(¥(F{true,ap,...,a.)))
else O(¥( F(false,a),...,a,)})

whereas if n=l then:
$(Flay)) => ¥(F(a)))

The mapping ¢ transforms a Boolean expression
F(aj,a2,+..,8,) intc 2 nested conditional expression
in which no argument a; is evaluated more than once
in any given execution. Specifically, if the a4y are
Boolean variables, the evaluation time is at most
ptoporticnal teo the number of distinct variables in

F(2],32,«0vsa,):
) For example, let F{a,b,c,d) = {(ar~b)v(dalavc)).
Then,
' __@((ah?b)v(dn(avc)))
=> if a then (if b then 4 else true)
elese {if d then c elee false) .

Essentially the resulting code is a binary deci-
sion tree based on successive tests of the arguments
81,85,..4,3,, 50 we may need to use an exponential
amount of code to achieve evaluation times that are
at worst proporticnal to the number of avguments,

8. Reftnement of Abstract Data Structures

5 Given en elgor{thm A written using set notatilon
{e.g® using expressions such as Dn(BuC), or £f Xe¥
then € + Cu{X}), we may wish to utilize one of many
possible underlying representatiocns for sets, and

we may attempt to map A onto an underlying concrete
program with respect to the chosen representation.

Here, we exemplify what might happen 1If the expres-




slon Xe¥ were to be mapped ento underlying progran
text wicth respect to different choices of represen-
tations,

First suppose X Is & character and that Y is a
set of characters. Suppese further that we choose
to represent ¥ by a list. We might assert formally:

{1) Let {X) be a (Character) /

{2} Let (¥) be a (Set of (Character);)
{3) Represent (Y) by a {lList)

e

ement (3):

if (the Representation of {¥} is a (List)) then
Assert (the Representation of (Y) is
(Finitely Erumerable))

As 4 consequence, a new statement can be made:

(4) The Representation of (YY) is
(Finitely Epumerable)

We now examine the following transformation:

provided (There exists a {Z) such that
{({X) 1s a (2)) and ({¥)} is a (Set of (2}=)
and (the Representation of (¥) is
{Finitely Fnumerable})}}):

(XeY) => begin
for each a such thai acY do
if X=a then Return(irue);
Return{false)

The enabling condition of this transformation is
satisfied by assertions {1),{2), and (&) above.
Hence, (XcY) can be rewritten as:

(5) begin
For each a such that acY do
if X=a then Return(irue};
Return(false)

Now the following transformatioﬁ applies:
provided the Representation of (Y) is a (List):
for each a such that act do S(a)

=> begin list t; c¢ + Y; oo
while t ¥ NIL do '
begin o
S(head{t)}; ST
t +« taii{t) :
end;
ernd

The latter transformation maps the text of (5}
into a concrete implementation of the member-
ship predicate XeY when Y 1s a list,

If the representation for Y had been an array
instead of a list, the underlying concrete code
generated would have been different. For example,
consider the following transformation:

provided the Representation of {Y) is
an (Array [M:N]):

: ‘for ecch a such that acY do §(a) =>

: begin integer i; :
: for 1M atep 1 uniil N do S(Y[i])

: end _
Applying this transformation to (5} above, in the

event Y is represented by a linear &rray, maps {5)
into the following underlying concrete program:

TNew apply the following deduciive assertion to /

begin integer i3

for 1« M etep 1 unsil K do
if ¥=Y[1] ihen Return({irue):

Return (foise)

end

9. Conelusions

By means of a series of brief examples, we have
attempted to demonstrate how programs could be both
improved and refined using source-to-source progran
transformations and program manipulating algorithms,

A much more extensive set of transformations is
required to achieve effective coverage of the range
of useful manipulations that tend te seccur im prac-
tice, Many groups of these have been collected in
the Jruine Program Transfornation Catalogue [221,
which provides, among other things, a more extensive
and precise treatment of many of the topics touched
upon enly lightly in this brief exposition,

We have omitted here any considerations of how a
programuer using an Intervactive program manipulation
systerm would specify the particular transformation
he wishes to apply, and the locus within the program
where he wishes to apply it. These matters are

" treated 1n a document explaining our program manipu-

lation system Arcturus{26].

Despite the limitations of our discussion, we
believe that the examples examined give a glimpse
of the potential utility of program manipulation
techniques far improving and refining programs.
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